Supporting Information

A Li⁺ Conductive Metal Organic Framework Electrolyte Boosts the High-Temperature Performance of Dendrite-Free Lithium Batteries

Nan Chen ^{*a*,†}, Yuejiao Li ^{*a*,†} Yujuan Dai ^{*a*}, Wenjie Qu ^{*a*}, Yi Xing ^{*a*}, Yusheng Ye ^{*a*}, Ziyue Wen ^{*a*}, Cui Guo ^{*a*}, Feng Wu ^{*a*,b}, Renjie Chen ^{**a*,b}

^{*a*} School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

^b Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China.

[†]These authors contributed equally to this work and should be considered co-first authors.

* Corresponding Author, E-mail: chenrj@bit.edu.cn

Experimental Section

Materials: Reagents included $Co(NO_3)_2 \cdot 6H_2O$ (99.99%, J&K Chemicals, China), anhydrous methanol (99.9%, Aladdin, China), 2-methyl imidazole (99%, J&K Chemicals, China), N-propyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide ([Py13][TFSI], >99%, Shanghai Cheng Jie, China), and lithium bis(trifluoromethylsulfonyl) imide (LiTFSI, >99%, 3M, USA, dried at 80 °C under vacuum for 48 h and subsequently placed in a glove box). Other materials were purchased and used without further purification.

Synthesis: ZIF-67 was prepared by a melt-stirring method. $Co(NO_3)_2 \cdot 6H_2O$ (8.22 g) and 2-methyl imidazole (18.5 g) were dissolved separately in 400 mL quantities of anhydrous methanol, after which the two solutions were mixed using a peristaltic pump at a flow rate of 100 mL·min⁻¹. During this process, the color of the $Co(NO_3)_2 \cdot 6H_2O$ solution changed from red to purple. The solution was allowed to sit overnight at room temperature (25 °C) and a purple solid precipitate was obtained. After centrifugation at 5 °C and drying at 60 °C for 24 h, the ZIF-67 was collected. The ionic liquid electrolyte (ILE) was obtained by mixing [Py13][TFSI] with LiTFSI in a glove box. The ILE@MOF electrolytes were prepared by high energy ball milling. In this process, the desired amounts of ZIF-67 and ILE were combined at a 2:3 mass ratio in a zirconia vial and subjected to high energy ball milling for 1 h in an Ar-filled dry box at a rate of 300 r·min⁻¹. The resulting ILE@MOF was rolled into a 50-µm-thick film and cut into free-standing pieces to allow for electrochemical measurements.

Characterization and instruments: The morphologies and microstructural features of the materials were examined using scanning electron microscopy (SEM; FEI Quanta 600). Surface areas were determined by nitrogen gas absorption in conjunction with the Brunauer–Emmett–Teller (BET) method, using an Autosorb-iQ2-MP analyzer. X-Ray powder diffraction (XRD) was performed over the 2 θ range from 5° to 90° at a scanning rate of 2°·min⁻¹ with an X-ray diffractometer (Rigaku, Japanese), employing Cu-K α radiation at 40 kV and 40 mA. Thermogravimetric analysis (TGA) was carried out under an Ar flow from ambient to 700 °C at a heating rate of 10 °C·min⁻¹ using a Netzsch TG209F1 analyzer. Fourier Transform

infrared spectroscopy (FTIR) was performed with a Nicolet 6700 FTIR spectrometer over the wavelength range of 400–4000 cm⁻¹ and at a resolution of 4 cm⁻¹. Flammability tests of the ILE@MOF were carried out using an electronic Bunsen burner. In these trials, the ILE@MOF electrolyte was placed in the middle of a Petri dish and heated directly with the Bunsen burner. ESCALAB 250Xi was used to execute XPS. Bruker AV 300 was used to execute solid-state NMR.

Electrochemical measurements: The ionic conductivity of the ILE@MOF was measured by electrochemical impedance spectroscopy (CHI660D, China) at various temperatures within the range from -10 to 80 °C and in the frequency range from 10 to 10^5 Hz using an SS/ILE@MOF/SS cell, where SS is stainless steel. The electrochemical anodic stability of the ILE@MOF was assessed by linear sweep voltammetry (LSV) at room temperature, employing a CHI660D workstation at a scan rate of 0.1 mV·s⁻¹ in conjunction with a Li/ILE@MOF/SS cell. The electrochemical cathodic stability of the ILE@MOF was evaluated by acquiring cyclic voltammograms (CV) at a scan rate of 0.1 mV·s⁻¹ using the Li/ILE@MOF/SS cell. Li/ILE@MOF/Li symmetric cells were employed during interface stability trials and Li stripping/plating tests. Li/ILE/Li symmetric cells were used for control experiments, with 1 M LiTFSI as the electrolyte and a Celgard separator. Li metal electrodes were collected after stripping/plating tests and were washed with methyl ethyl carbonate in an Ar-filled glove box prior to SEM analysis.

Assembly and performance testing of LMBs: Electrodes were fabricated by mixing 80 wt% electrode material (LiFePO₄, LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂, LiNi_{0.8}Mn_{0.1}Co₀₁O₂ or Li₄Ti₅O₁₂), 10 wt% acetylene black and 10 wt% polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) to form a viscous slurry that was then cast onto Al foil. The electrodes were heated at 80 °C for 24 h to evaporate the residual solvent then were cut into circular discs with a diameter of 11 mm. The average loading of LiFePO4 was approximately 4.2 mg·cm⁻², corresponding to 0.7 mAh·cm⁻² based on the theoretical capacity of LiFePO₄ (170 mAh·g⁻¹). The average loadings of the $LiNi_{0.33}Mn_{0.33}Co_{0.33}O_2$, $LiNi_{0.8}Mn_{0.1}Co_{0.1}O_2$ and $Li_4Ti_5O_{12}$ were 3.7, approximately 4.0 and 3.9 mg·cm⁻². LMBs were prepared in an Ar-filled glove box by placing the electrodes, ILE@MOF and Li metal in a CR2032 button cell to form a cell without any separator. The charge/discharge cycling of LMBs was performed using a Land instrument. The Li/LiFePO4 cells were discharged between 2.7 and 4.2 V at 0.1 C (1.0 C=170 mA·g⁻¹) at 60 °C. The Li/LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂ cells were charged/discharged between 2.8 and 4.2 V at 2.0 C (1.0 C=140 mA \cdot g⁻¹) at 60, 90, 120 and 150 °C. The Li/LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂ cells were charged/discharged between 2.7 and 4.3 V at 2.0 C (1.0 C=150 mA·g⁻¹) at 150 °C. The Li/Li₄Ti₅O₁₂ cells were charged/discharged between 1.0 and 2.5 V at 1.0 C (1.0 C=170 mA·g⁻¹) at 150 °C. The Li metal electrode, ILE@MOF electrolyte and cathode electrode were washed with methyl ethyl carbonate and stored in an Ar-filled glove box for SEM analysis. Electrochemical impedance spectroscopy was performed with a CHI660D apparatus at various temperatures. Electrochemical stability data were obtained from CV results acquired with a CHI660D workstation at a scan rate of $0.1 \text{ mV} \cdot \text{s}^{-1}$.

Figure S1. XRD pattern of MOF, ILE@MOF electrolyte, and ILE@MOF after wash with acetonitrile to removal of the ILE.

Figure S2. FTIR spectra of MOF, ILE@MOF and ILE.

Figure S3 ⁷Li NMR spectra for ILE and ILE@MOF.

Figure S4 a) SEM images of a fresh Li metal. b) SEM images of Li metal surface in the Li/ILE@MOF/LI cell before cycling.

Figure S5 a) Voltage profiles for Li/ILE@MOF/Li cell cycling at a current density of 0.1 mA·cm⁻² at 60 °C. Each cycle is set to be 10 h. b) Voltage profiles for Li/ILE /Li cell cycling at a current density of 0.1 mA·cm⁻² at 60 °C. Each cycle is set to be 10 h.

Figure S6 f) SEM morphology for Li anode in Li/ILE /Li cell after 1000 h cycling at 0.1 mA·cm⁻² at 60 °C.

Figure S7 Voltage profiles for Li/ILE@MOF/Li cell cycling at a current density of 0.5 mA·cm⁻² at 120 °C. Each cycle is set to be 2 h.

Figure S8 a) Co 2P XPS spectra for the thin particles layer of Li metal after 100 h stripping/plating at 150 °C. b) Co 2P XPS spectra of fresh ILE@MOF electrolyte.

Figure S9 Cycle performance of the Li/LiFePO₄ cells using the ILE@MOF electrolyte at 60 °C.

Figure S10 Galvanostatic charge/discharge plots of Li/LiFePO₄ cell using the ILE@MOF electrolyte.

Figure S11 Cyclic voltammograms of the Li/LiFePO₄ cell using ILE@MOF electrolyte.

Figure S12 Cyclic voltammograms of the $Li/LiNi_{0.33}Mn_{0.33}Co_{0.33}O_2$ cell using ILE@MOF electrolyte.

Figure S13 Electrochemical impedance spectra (EIS) of Li/LiNi $_{0.33}$ Mn $_{0.33}$ C $_{0.33}$ O₂ cell using ILE@MOF electrolyte at 60, 90, 120, and 150 °C.

Figure S14 SEM images of LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂ electrode surface after initial discharged at a) 90 °C and b) 120 °C.

Figure S15 SEM images of dense MOF on the surface of cycled LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂ electrode.

Figure S16 The voltage profiles of Li/ILE@MOF/Li $_4$ Ti $_5$ O $_{12}$ cell at rate of 0.1 C and at room temperature.

Figure S17 Cycling performances of Li/Li₄Ti₅O₁₂ cell using the ILE@MOF electrolyte at a current density of 1.0 C at 150 °C.

Table S1 Summarized the BET information.
--

Materials	MOF	ILE@MOF- 0.2M LiTFSI	ILE@MOF- 0.6M LiTFSI	ILE@MOF- 1.0M LiTFSI
Specific surface (m ² /g)	1352.1974	2.6145	2.1754	0.0087

The BET result revealed that the specific surface of MOF is 1352.1974 m²/g. and the specific surface of ILE@MOF decreases from 1791.88 m²/g to 5.26 m²/g by introducing of ILE.

Table S2 Summarized the fundamental security information of different electrolytes

Electrolyte	Thermal stability	Electrode	Test temperature	Cycle performance (mAh·g ⁻¹)	Ref.			
ILE@MOF	325 °C	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	150 °C	143.5 at 2.0 C	Our			
		LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂	150 °C	137.3 at 2.0 C	work			
		Li ₄ Ti ₅ O ₁₂	150 °C	~165 at 1.0 C	WOIK			
Liquid								
1M LiPF ₆ -EC/EMC/DMC	40 °C	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	25 °C	190 at 0.1 C	[2]			
LiTFSI/[EMIm][FSI]	220 °C	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	RT	163 at 1.0 C	[3]			
1M LiPF ₆ -EC/	100 °C	LiNiMnCoO.	рт	230 at 0.1 C	[4]			
DMC/EMC+PP13TFSI		Liivi _{0.33} iviii _{0.33} Co _{0.33} O ₂		250 at 0.1 C				
LiTFSI-EC/DMC+	100 °C	L iEeDO.	рт	150 at 0.1 C	[5]			
[Py14][TFSI]	100 C			150 at 0.1 C	1.1			
Ionogel								
h-BN/[PP13][TFSI]/LiTFSI	-	Li ₄ Ti ₅ O ₁₂	150 °C	~145 at 0.5 C	[6]			
Clay/[PP13][TFSI]/LiTFSI	370 °C	Li ₄ Ti ₅ O ₁₂	120 °C	~60 at 1/3 C	[7]			
SiO ₂ /[BMI][TFSI]/LiTFSI	390 °C	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	30 °C	~149 at 0.1 C	[8]			
TiO ₂ /[Py13][TFSI]/LiTFSI	375 °C	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	RT	120 at 0.1 C	[9]			
SiO ₂ -PP-TFSI/PC/	250 °C		рт	120 at 1.0 C	[10]			
1M LiTFSI	230 C		KI	150 at 1.0 C				
Gel polymer								
PVdF/P(VC-VAc)-1M	240 °C	LiNis Mn. O.	RT	127 at 0.5 C	[11]			
LiPF ₆ -EC/EMC/DMC	240 C	Liivi <u>0.5</u> iviii <u>1.5</u> 04	KI	127 at 0.5 C				
PEO-LiTFSI-EMIMTFSI	310 °C	LiMn ₂ O ₄	RT	120 at 0.1 C	[12]			
LiTFSI–[PP14][TFSI]– P(VdF-HFP)	150 °C	LiFePO ₄	60 °C	131 at 1.0 C	[13]			

RT: Room Temperature

References

[1] Z. Wang, J. Liu, C. Li, P. Zhang and H. Zhuo, *International Journal of Electrochemical Science* 2016, **11**, 6149-6163.

- [2] K. Matsumoto, S. Sogabe and T. Endo, *Journal of Polymer Science Part A: Polymer Chemistry* 2012, **50**, 1317-1324.
- [3] Y. Matsui, S. Kawaguchi, T. Sugimoto, M. Kikuta, T. Higashizaki, K. Michiyuki, M. Yamagata and M. Ishikawa, *Electrochemistry* 2012, **80**, 808-811.
- [4] H. Li, J. Pang, Y. Yin, W. Zhuang, H. Wang, C. Zhai and S. Lu, RSC Advances 2013, 3, 13907-13914.
- [5] M. Agostini, L. G. Rizzi, G. Cesareo, V. Russo and J. Hassoun, *Advanced Materials Interfaces* 2015, **2**, 1500085.
- [6] M. T. F. Rodrigues, K. Kalaga, H. Gullapalli, G. Babu, A. L. M. Reddy and P. M. Ajayan, *Advanced Energy Materials* 2016, **6**, 201600218.
- [7] K. Kalaga, M.-T. F. Rodrigues, H. Gullapalli, G. Babu, L. M. R. Arava and P. M. Ajayan, *ACS Applied Materials & Interfaces* 2015, **7**, 25777-26783.
- [8] G. Tan, F. Wu, C. Zhan, J. Wang, D. Mu, J. Lu and K. Amine, Nano Letters 2016, 16, 1960-1968.
- [9] F. Wu, N. Chen, R. Chen, Q. Zhu, G. Tan and L. Li, Advanced Science 2016, 3, 1500306.
- [10] Y. Lu, K. Korf, Y. Kambe, Z. Tu and L. A. Archer, Angewandte Chemie 2014, 53, 488-492.
- [11] M. Zhao, X. Zuo, X. Ma, X. Xiao, J. Liu and J. Nan, Journal of Membrane Science 2017, 532, 30-37.
- [12] L. Balo, Shalu, H. Gupta, V. Kumar Singh and R. Kumar Singh, *Electrochimica Acta* 2017, 230, 123-131.
- [13] L. Liu, P. Yang, L. Li, Y. Cui and M. An, Electrochimica Acta 2012, 85, 49-56.