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Experimental Section 
Materials: Reagents included Co(NO3)2·6H2O (99.99%, J&K Chemicals, China), anhydrous methanol 

(99.9%, Aladdin, China), 2-methyl imidazole (99%, J&K Chemicals, China), N-propyl-N-

methylpyrrolidinium bis(trifluoromethylsulfonyl) imide ([Py13][TFSI], >99%, Shanghai Cheng Jie, China), 

and lithium bis(trifluoromethylsulfonyl) imide (LiTFSI, >99%, 3M, USA, dried at 80 °C under vacuum for 

48 h and subsequently placed in a glove box). Other materials were purchased and used without further 

purification.

Synthesis: ZIF-67 was prepared by a melt-stirring method. Co(NO3)2·6H2O (8.22 g) and 2-methyl 

imidazole (18.5 g) were dissolved separately in 400 mL quantities of anhydrous methanol, after which the 

two solutions were mixed using a peristaltic pump at a flow rate of 100 mL·min-1. During this process, the 

color of the Co(NO3)2·6H2O solution changed from red to purple. The solution was allowed to sit overnight 

at room temperature (25 °C) and a purple solid precipitate was obtained. After centrifugation at 5 °C and 

drying at 60 °C for 24 h, the ZIF-67 was collected. The ionic liquid electrolyte (ILE) was obtained by 

mixing [Py13][TFSI] with LiTFSI in a glove box. The ILE@MOF electrolytes were prepared by high 

energy ball milling. In this process, the desired amounts of ZIF-67 and ILE were combined at a 2:3 mass 

ratio in a zirconia vial and subjected to high energy ball milling for 1 h in an Ar-filled dry box at a rate of 

300 r·min-1. The resulting ILE@MOF was rolled into a 50-μm-thick film and cut into free-standing pieces 

to allow for electrochemical measurements.

Characterization and instruments: The morphologies and microstructural features of the materials were 

examined using scanning electron microscopy (SEM; FEI Quanta 600). Surface areas were determined by 

nitrogen gas absorption in conjunction with the Brunauer–Emmett–Teller (BET) method, using an 

Autosorb-iQ2-MP analyzer. X-Ray powder diffraction (XRD) was performed over the 2θ range from 5° to 

90° at a scanning rate of 2°·min-1 with an X-ray diffractometer (Rigaku, Japanese), employing Cu-Kα 

radiation at 40 kV and 40 mA. Thermogravimetric analysis (TGA) was carried out under an Ar flow from 

ambient to 700 °C at a heating rate of 10 °C·min-1 using a Netzsch TG209F1 analyzer. Fourier Transform 
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infrared spectroscopy (FTIR) was performed with a Nicolet 6700 FTIR spectrometer over the wavelength 

range of 400–4000 cm-1 and at a resolution of 4 cm-1. Flammability tests of the ILE@MOF were carried out 

using an electronic Bunsen burner. In these trials, the ILE@MOF electrolyte was placed in the middle of a 

Petri dish and heated directly with the Bunsen burner. ESCALAB 250Xi was used to execute XPS. Bruker 

AV 300 was used to execute solid-state NMR.

Electrochemical measurements: The ionic conductivity of the ILE@MOF was measured by 

electrochemical impedance spectroscopy (CHI660D, China) at various temperatures within the range from 

-10 to 80 °C and in the frequency range from 10 to 105 Hz using an SS/ILE@MOF/SS cell, where SS is 

stainless steel. The electrochemical anodic stability of the ILE@MOF was assessed by linear sweep 

voltammetry (LSV) at room temperature, employing a CHI660D workstation at a scan rate of 0.1 mV·s-1 in 

conjunction with a Li/ILE@MOF/SS cell. The electrochemical cathodic stability of the ILE@MOF was 

evaluated by acquiring cyclic voltammograms (CV) at a scan rate of 0.1 mV·s-1 using the Li/ILE@MOF/SS 

cell. Li/ILE@MOF/Li symmetric cells were employed during interface stability trials and Li 

stripping/plating tests. Li/ILE/Li symmetric cells were used for control experiments, with 1 M LiTFSI as 

the electrolyte and a Celgard separator. Li metal electrodes were collected after stripping/plating tests and 

were washed with methyl ethyl carbonate in an Ar-filled glove box prior to SEM analysis.

Assembly and performance testing of LMBs: Electrodes were fabricated by mixing 80 wt% electrode 

material (LiFePO4, LiNi0.33Mn0.33Co0.33O2, LiNi0.8Mn0.1Co01O2 or Li4Ti5O12), 10 wt% acetylene black and 

10 wt% polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) to form a viscous slurry that 

was then cast onto Al foil. The electrodes were heated at 80 °C for 24 h to evaporate the residual solvent 

then were cut into circular discs with a diameter of 11 mm. The average loading of LiFePO4 was 

approximately 4.2 mg·cm-2, corresponding to 0.7 mAh·cm-2 based on the theoretical capacity of LiFePO4 

(170 mAh·g-1). The average loadings of the LiNi0.33Mn0.33Co0.33O2, LiNi0.8Mn0.1Co0.1O2 and Li4Ti5O12 were 

3.7, approximately 4.0 and 3.9 mg·cm-2. LMBs were prepared in an Ar-filled glove box by placing the 

electrodes, ILE@MOF and Li metal in a CR2032 button cell to form a cell without any separator. The 

charge/discharge cycling of LMBs was performed using a Land instrument. The Li/LiFePO4 cells were 

discharged between 2.7 and 4.2 V at 0.1 C (1.0 C=170 mA·g-1) at 60 °C. The Li/LiNi0.33Mn0.33Co0.33O2 

cells were charged/discharged between 2.8 and 4.2 V at 2.0 C (1.0 C=140 mA·g-1) at 60, 90, 120 and 150 

°C. The Li/LiNi0.8Mn0.1Co0.1O2 cells were charged/discharged between 2.7 and 4.3 V at 2.0 C (1.0 C=150 

mA·g-1) at 150 °C. The Li/Li4Ti5O12 cells were charged/discharged between 1.0 and 2.5 V at 1.0 C (1.0 

C=170 mA·g-1) at 150 °C. The Li metal electrode, ILE@MOF electrolyte and cathode electrode were 

washed with methyl ethyl carbonate and stored in an Ar-filled glove box for SEM analysis. 

Electrochemical impedance spectroscopy was performed with a CHI660D apparatus at various 

temperatures. Electrochemical stability data were obtained from CV results acquired with a CHI660D 

workstation at a scan rate of 0.1 mV·s-1.
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Figure S1. XRD pattern of MOF, ILE@MOF electrolyte, and ILE@MOF after wash with acetonitrile 

to removal of the ILE.
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Figure S2. FTIR spectra of MOF, ILE@MOF and ILE.
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Figure S3 7Li NMR spectra for ILE and ILE@MOF.

Figure S4 a) SEM images of a fresh Li metal. b) SEM images of Li metal surface in the Li/ILE@MOF/LI 

cell before cycling.
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Figure S5 a) Voltage profiles for Li/ILE@MOF/Li cell cycling at a current density of 0.1 mA·cm-2 at 60 

°C. Each cycle is set to be 10 h. b) Voltage profiles for Li/ILE /Li cell cycling at a current density of 0.1 

mA·cm-2 at 60 °C. Each cycle is set to be 10 h.

Figure S6 f) SEM morphology for Li anode in Li/ILE /Li cell after 1000 h cycling at 0.1 mA·cm-2 at 60 °C.
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Figure S7 Voltage profiles for Li/ILE@MOF/Li cell cycling at a current density of 0.5 mA·cm-2 at 120 °C. 

Each cycle is set to be 2 h.
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After strip/plat at 150 C
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Figure S8 a) Co 2P XPS spectra for the thin particles layer of Li metal after 100 h stripping/plating at 150 

°C. b) Co 2P XPS spectra of fresh ILE@MOF electrolyte.

0 10 20 30 40 50 600

50

100

150

200

250
 

 Charge
 Discharge

Cycle number

Ca
pa

ci
ty

/m
A

h
g-1

LiFePO4

60 C  0.1 C

50

60

70

80

90

100

Co
ul

om
bi

c 
ef

fic
ie

nc
y/

%

Figure S9 Cycle performance of the Li/LiFePO4 cells using the ILE@MOF electrolyte at 60 °C.
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Figure S10 Galvanostatic charge/discharge plots of Li/LiFePO4 cell using the ILE@MOF electrolyte.
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Figure S11 Cyclic voltammograms of the Li/LiFePO4 cell using ILE@MOF electrolyte.



9

Figure S12 Cyclic voltammograms of the Li/LiNi0.33Mn0.33Co0.33O2 cell using ILE@MOF electrolyte.

  

Figure S13 Electrochemical impedance spectra (EIS) of Li/LiNi0.33Mn0.33C0.33O2 cell using ILE@MOF 

electrolyte at 60, 90, 120, and 150 °C.
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a b

Figure S14 SEM images of LiNi0.33Mn0.33Co0.33O2 electrode surface after initial discharged at a) 90 °C and 

b) 120 °C.

Figure S15 SEM images of dense MOF on the surface of cycled LiNi0.33Mn0.33Co0.33O2 electrode.  

0 20 40 60 80
0.5

1.0

1.5

2.0

2.5

 

 

V
ol

at
ge

 / 
V

Time / h

Li/ILE@MOF/Li4Ti5O12
Room Temperature
0.1 C rate

Figure S16 The voltage profiles of Li/ILE@MOF/Li4Ti5O12 cell at rate of 0.1 C and at room temperature.
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Figure S17 Cycling performances of Li/Li4Ti5O12 cell using the ILE@MOF electrolyte at a current density 

of 1.0 C at 150 °C.
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Table S1 Summarized the BET information.

Materials MOF
ILE@MOF-

0.2M LiTFSI

ILE@MOF-

0.6M LiTFSI

ILE@MOF-

1.0M LiTFSI

Specific surface（m2/g） 1352.1974 2.6145 2.1754 0.0087

The BET result revealed that the specific surface of MOF is 1352.1974 m2/g. and the specific surface of 

ILE@MOF decreases from 1791.88 m2/g to 5.26 m2/g by introducing of ILE.

Table S2 Summarized the fundamental security information of different electrolytes

Electrolyte Thermal 
stability Electrode Test 

temperature

Cycle 
performance

(mAh·g-1)
Ref.

ILE@MOF 325 °C

LiNi0.33Mn0.33Co0.33O2 

LiNi0.8Mn0.1Co0.1O2

Li4Ti5O12

150 °C

150 °C

150 °C

143.5 at 2.0 C

137.3 at 2.0 C

~165 at 1.0 C

Our 

work

Liquid

1M LiPF6-EC/EMC/DMC 40 °C LiNi0.33Mn0.33Co0.33O2 25 °C 190 at 0.1 C [2]

LiTFSI/[EMIm][FSI] 220 °C LiNi0.33Mn0.33Co0.33O2 RT 163 at 1.0 C [3]

1M LiPF6-EC/

DMC/EMC+PP13TFSI
100 °C LiNi0.33Mn0.33Co0.33O2 RT 230 at 0.1 C [4]

LiTFSI-EC/DMC+ 

[Py14][TFSI]
100 °C LiFePO4 RT 150 at 0.1 C [5]

Ionogel

h-BN/[PP13][TFSI]/LiTFSI - Li4Ti5O12 150 °C ~145 at 0.5 C [6]

Clay/[PP13][TFSI]/LiTFSI 370 °C Li4Ti5O12 120 °C ~60 at 1/3 C [7]

SiO2/[BMI][TFSI]/LiTFSI 390 °C LiNi0.33Mn0.33Co0.33O2 30 °C ~149 at 0.1 C [8]

TiO2/[Py13][TFSI]/LiTFSI 375 °C LiNi0.33Mn0.33Co0.33O2 RT 120 at 0.1 C [9]

SiO2-PP-TFSI/PC/

1M LiTFSI
250 °C Li4Ti5O12 RT 130 at 1.0 C [10]

Gel polymer

PVdF/P(VC-VAc)-1M 

LiPF6-EC/EMC/DMC
240 °C LiNi0.5Mn1.5O4 RT 127 at 0.5 C [11]

PEO–LiTFSI–EMIMTFSI 310 °C LiMn2O4 RT 120 at 0.1 C [12]

LiTFSI–[PP14][TFSI]–

P(VdF-HFP)
150 °C LiFePO4 60 °C 131 at 1.0 C [13]

RT: Room Temperature
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