Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Novel iron oxide-cerium oxide core-shell nanoparticle as a potential

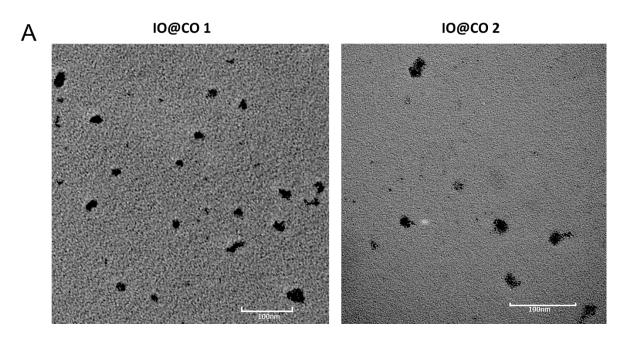
theranostic material for ROS related inflammatory diseases

<u>Yuao Wu</u>^a, Yanchen Yang^a, Wei Zhao^a, Zhi Ping Xu^a, Peter Little^d, Andrew K. Whittaker^{a,b,c},

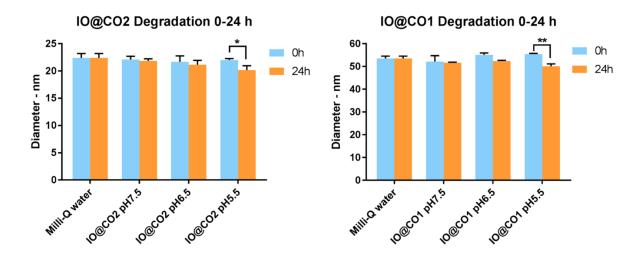
Run Zhang^a, Hang T. Ta^{a,b,d*}

^aAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland,

Brisbane, Australia


^bAustralian Research Council Centre of Excellence in Convergent Bio-Nano Science and

Technology, Brisbane, Australia


^cCentre for Advanced Imaging, the University of Queensland, Brisbane, Australia

^dSchool of Pharmacy, the University of Queensland, Brisbane, Australia

*Correspondence to Hang T. Ta (<u>h.ta@uq.edu.au</u>)

Figure S1. Low magnification TEM images IO@CO1 and IO@CO2 nanoparticles. Low magnification images showed the both distribution of IO@CO1 and IO@CO2 are good which corresponding to DLS data.

Figure S2. Degradation studies of IO@CO1 and IO@CO2. The Degradation studies showed both size of the IO@CO1 and IO@CO2 were decreased after 24hours treated by pH12 water.