One-step synthesis of nitrogen, sulfur co-doped carbon nanodots and application for Fe³⁺ detection

Xingwang Qie,^{a,b} Minghui Zan^c, Peng Miao^a, Li Li^{*a}, Zhimin Chang^a, Mingfeng Ge^a,

Ping Gui^b, Yuguo Tang^a, Wen-Fei Dong*^a

^aCAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical

Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR

China

^bUniversity of Science and Technology of China, Hefei 230026, PR China

^cKey Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education,

School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.

^{*} Corresponding authors.

E-mail addresses: jlu_li@163.com (L. Li), wenfeidong@126.com (W. Dong).

Supplementary Figures and Tables

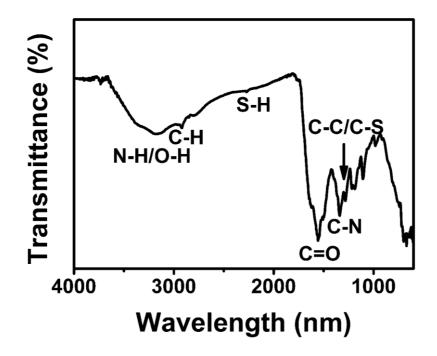


Figure S1. FTIR spectrum of the prepared N, S-CDs

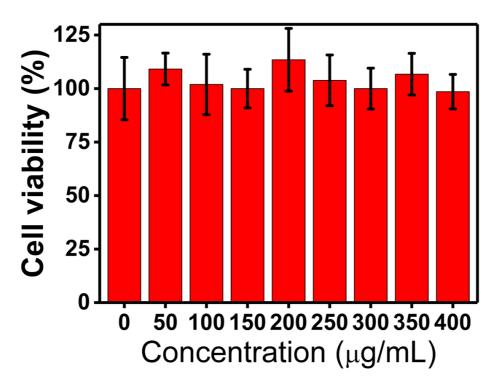


Figure S2. Cell viability assay of HeLa S3 cells treated with different concentrations of N, S-CDs.

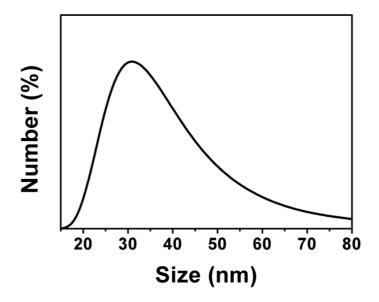


Figure S3. DLS spectrum of the prepared N, S-CDs with Fe^{3+} .

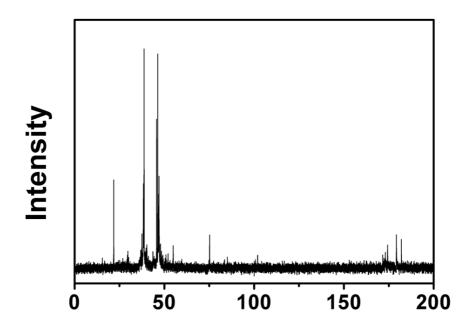


Figure S4. ¹³C NMR spectrum of N, S-CDs.

Sample	m _{CA} : m _{Thiourea}	QY (%)
1	2:1	10
2	1:1	15
3	2:1	14

Table S1. Fluorescence quantum yield of N, S-CDs prepared from different reaction ratios for 8 h.

Table S2. Fluorescence quantum yield of N, S-CDs prepared from different reaction

time with the	reaction	ratio	of 1:	1.
---------------	----------	-------	-------	----

Sample	Reaction time (h)	QY (%)
1	6	12.1
2	8	15
3	10	13.5

Table S3. Comparison of the detection limit of prepared CDs-based nanosensor with other reported Fe^{3+} nanosensors.

probe	Linear range (µM)	Detection limit (µM)	References
Graphene quantum dots	Less than 80	7.22	1
CDs	0-20	0.32	2
CDs	0-7.0	0.2	3
S-CDs	1.0-500	0.1	4
N, S-CDs	25-500	4	5
N, S-CDs	0.1-3.5	0.0173	This study

References:

- 1. B. Shi, Y. Su, L. Zhang, M. Huang, R. Liu and S. Zhao, *ACS applied materials & interfaces*, 2016, **8**, 10717-10725.
- K. Qu, J. Wang, J. Ren and X. Qu, *Chemistry-A European Journal*, 2013, **19**, 7243-7249.
- R. Liu, M. Gao, J. Zhang, Z. Li, J. Chen, P. Liu and D. Wu, *RSC Advances*, 2015, 5, 24205-24209.
- Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Chen, Y. Liu and
 H. Zhou, *Journal of Materials Chemistry A*, 2015, 3, 542-546.
- 5. H. Ding, J.-S. Wei and H.-M. Xiong, *Nanoscale*, 2014, **6**, 13817-13823.