An ATP/ATPase responsive supramolecular fluorescent hydrogel constructed *via* electrostatic interactions between poly(sodium *p*styrenesulfonate) and a tetraphenylethene derivative

Hu Wang,^a Xiaofan Ji,^{*a} Yang Li,^b Zhengtao Li,^a Guping Tang,^b and Feihe Huang^{*a}

^a State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China; Fax and Tel: +86-571-8795-3189; Email: xiaofanji@zju.edu.cn; fhuang@zju.edu.cn

^bDepartment of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

Supporting Information (11 pages)

1.	Materials and methods	<i>S2</i>
2.	¹ H NMR spectrum of 2	<i>S2</i>
3.	Partial NOESY NMR spectrum of a mixture of 1 and 2	<i>S3</i>
4.	Rheological characterization of hydrogel ${m 3}$ at different temperatures	<i>S3</i>
5.	Specific viscosity of polymer 1, compound 2, and hydrogel 3	<i>S4</i>
6.	Diffusion coefficient D (500 MHz, D ₂ O, 298 K) of mixture solutions of I with different	
	concentrations of 2	<i>S5</i>
7.	Photographs of 2 under natural light and 365 nm UV light after addition of 1 , ATP,	
	and alkaline phosphatase ATPase	<i>S7</i>
8.	Fluorescence spectra of 2, hydrogel 3, 3 after addition of ATP, and 3 after further	
	addition of alkaline phosphatase ATPase	<i>S</i> 8
9.	Controlled formation of hydrogel 3 by addition of ATP and alkaline phosphatase	
	ATPase	<i>S</i> 8
10.	Response of a mixture of 1 and 2 toward ADP and pyrophosphate (Na ₄ P ₂ O ₇)	<i>S</i> 9
11.	Response of hydrogel 3 toward ADP and $Na_4P_2O_7$	<i>S10</i>
12.	Dynamic color change photos during the gelation process of hydrogel 3	<i>S11</i>

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Compound **2** was prepared according to the published procedures.^{S1} NMR spectra were recorded with a Bruker Avance DMX 500 spectrophotometer using the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. The two-dimensional diffusion-ordered NMR spectra were recorded on a Bruker DRX 500 spectrometer. The fluorescence data were measured on an RF-5301 spectrofluorophotometer (Shimadzu Corporation). Rheological data were obtained using a Physica MCR302 rheometer (Anton Paar) with cone-plate geometry (diameter of 25 mm, 2° cone, truncation height of 0.3 mm). Oscillatory frequency sweep experiments were performed from 0.1 rad/s to 100 rad/s with a strain in the linear region at 25 °C. Viscosity measurements were carried out with a Cannon-Ubbelohde semi-micro dilution viscometer at 25 °C in acetonitrile. Scanning electron microscopy investigations were carried out on a JEOL 6390LV instrument.

2. ¹H NMR spectrum of **2**

Figure S1. ¹H NMR spectrum (500 MHz, D₂O, 298 K) of **2**.

3. Partial NOESY NMR spectrum of a mixture of 1 and 2

Figure S2. Partial NOESY NMR (500MHz, D₂O, 298 K) spectrum of a solution of 0.0290 mM 1 and 5.00 mM 2.

4. Rheological characterization of hydrogel 3 at different temperatures

Figure S3. Rheological characterization of hydrogel **3** with the rise of temperature from 30 °C to 80 °C.

5. Specific viscosity of polymer 1, compound 2, and hydrogel 3

Figure S4. Specific viscosity (H₂O, 25 °C) of polymer 1 (•), compound 2 (•), and hydrogel 3 (\blacktriangle) versus the concentration of charges.

6. Diffusion coefficient D (500 MHz, D_2O , 298 K) of mixture solutions of **1** with different concentrations of **2**

Figure S5. Diffusion coefficient *D* (500 MHz, D₂O, 298 K) of mixture solution of **1** (2.94×10^{-3} mM) with different concentrations of **2**: (a) 0.250 mM; (b) 1.49 mM; (c) 2.84 mM; (d) 3.84 mM; (e) 5.21 mM.

7. Photographs of **2** under natural light and 365 nm UV light after addition of **1**, ATP, and alkaline phosphatase ATPase

Figure S6. Photographs under natural light and 365 nm UV light: (a) a mixture solution of $1 (4.14 \times 10^{-3} \text{ mM})$ and 2 (6.00 mM); (b) after addition of 12.0 mM of ATP to a; (c) after addition of 150 U L⁻¹ alkaline phosphatase ATPase to b.

8. Fluorescence spectra of **2**, hydrogel **3**, **3** after addition of ATP, and **3** after further addition of alkaline phosphatase ATPase

Figure S7. Fluorescence spectra of 2 (39.8 mM), hydrogel 3 (39.8 mM 2 + 0.234 mM 1), hydrogel 3 (39.8 mM 2 + 0.234 mM 1) after addition of ATP (79.6 mM), and hydrogel 3 (39.8 mM 2 + 0.234 mM 1) after addition of ATP (79.6 mM) and alkaline phosphatase ATPase (150 U L⁻¹).

9. Controlled formation of hydrogel 3 by addition of ATP and alkaline phosphatase ATPase

Figure S8. Controlled formation of hydrogel **3** (39.8 mM $\mathbf{2}$ + 0.234 mM $\mathbf{1}$) by addition of ATP (79.6 mM) and alkaline phosphatase ATPase (150 U L⁻¹). Photographs of the hydrogel were taken under either natural light or 365 nm UV light.

10. Response of a mixture of 1 and 2 toward ADP and pyrophosphate ($Na_4P_2O_7$)

Figure S9. Partial ¹H NMR spectra (500 MHz, D₂O, 298 K): (a) 4.14×10^{-3} mM **1**; (b) 6.00 mM **2**; (c) a mixed solution of 4.14×10^{-3} mM **1** and 6.00 mM **2**; (d) a mixed solution of 4.14×10^{-3} mM **1**, 6.00 mM **2** and 12.0 mM ADP.

Figure S10. Partial ¹H NMR spectra (500 MHz, D₂O, 298 K): (a) 4.14×10^{-3} mM 1; (b) 6.00 mM 2; (c) a mixed solution of 4.14×10^{-3} mM 1 and 6.00 mM 2; (d) a mixed solution of 4.14×10^{-3} mM 1, 6.00 mM 2 and 12.0 mM Na₄P₂O₇.

From ¹H NMR spectra in Figure S9 and Figure S10, the peaks of protons H_1-H_4 on **2** shifted down field when 6.00 mM **2** and 4.14×10^{-3} mM **1** were mixed. Then, after 12.0 mM ADP or pyrophosphate was added into this mixture, these peaks shifted back to high field. These results demonstrate that the hydrogel **3** could response toward ADP and pyrophosphate.

11. Response of hydrogel 3 toward ADP and $Na_4P_2O_7$

Figure S11. The gel-sol transformation of hydrogel **3** (39.8 mM 2 + 0.234 mM **1**) upon addition of ADP (79.6 mM) or Na₄P₂O₇ (79.6 mM).

12. Dynamic color change photos during the gelation process of hydrogel 3

Figure S12. The dynamic color change photos during the gelation process of hydrogel **3** upon mixing a clear and free flowing aqueous solution of polymer **1** (0.234 mM) and **2** (39.8 mM) taken at different time points after mixing: a) 1 min; b) 2 min; c) 3 min; d) 4 min; e) 5 min; f) 6 min; g) 7 min; h) 8 min; i) 9 min.

Reference

S1. B.-P. Jiang, D.-S. Guo, Y.-C. Liu, K.-P. Wang and Y. Liu, ACS Nano., 2014, 8, 1609–1618.