Supporting Information

NH₂-Ni-MOF electrocatalysts with tunable size/morphology for ultrasensitive C-reactive protein detection *via* an aptamer binding induced DNA walker-antibody sandwich assay

Zhen Wang,^a Pei Dong,^a Zhongxiong Sun,^a Ce Sun,^b Huaiyu Bu,^b Jing Han,^{*a} Sanping Chen^a

and Gang Xie*a

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.

^b Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China.

*Corresponding author:

Fax: +86 029 81535026; Tel: +86 029 81535026.

E-mail address: hanjing@nwu.edu.cn (J. Han), xiegang@nwu.edu.cn (G. Xie).

S1 XPS characterization of NH₂-Ni-MOF(c)

Fig. S1 XPS spectra of the as-synthesized NH₂-Ni-MOF(c): (A) Survey spectrum, (B) Ni 2p, (C) C 1s, (D) N 1s and (E) O 1s (Sat. means shake-up satellites).

Detection techniques	Linear ranges/ng mL ⁻¹	Detection limits	References
Square wave voltammetry	0.005-125	1.7 pg mL ⁻¹	[1]
Differential pulse voltammetry	0.05-100	16.7 pg mL ⁻¹	[2]
Colorimetric assay	0.3-81	0.07 ng mL ⁻¹	[3]
Pressure bioassay	0.25-25	0.21 ng mL ⁻¹	[4]
Cyclic voltammetry	50-5000	11 ng mL ⁻¹	[5]
Square wave voltammetry	0.0001-100	0.029 pg mL ⁻¹	This work

Table S1. Comparison of our research with other published methods for CRP detection.

-

Electrode materials	Detecting techniques	Targets	Linear ranges/ng mL ⁻¹	Detection limits	Ref
Au-MOF	Differential pulse voltammetry	CRP	1-400	0.2 ng mL ⁻¹	[6]
Zr-MOF	Electrochemical impedance spectroscopy	Cocaine	0.001-1.0	0.44 pg mL ⁻¹	[7]
Fe-MOF	Differential pulse voltammetry	Gal-3	0.0001- 50	33.33 fg mL ⁻¹	[8]
Al-MOF	Electrochemical impedance spectroscopy	Vomitoxin	0.001-0.5	0.7 pg mL ⁻¹	[9]
NH ₂ -Ni-MOF(c)	Square wave voltammetry	CRP	0.0001-100	0.029 pg mL ⁻¹	This work

Table S2. Comparison of the as-synthesized NH₂-Ni-MOF(c) with other MOF electrode materials.

Table S3. Detection of CRP added in human serum with the fabricated aptasensor (n = 3).

Samples	Added (ng mL ⁻¹)	Found (ng mL ⁻¹)	Recovery(%)	RSD(%)
1	0.01	0.009	90.0	2.2
2	0.50	0.53	106.0	4.1
3	1.00	0.97	97.0	3.7
4	10.00	10.32	103.2	2.9
5	50.00	46.81	93.6	5.6

References

- [1] J. C. Wang, J. J. Guo and Y. Z. Zhang, Biosens. Bioelectron., 2017, 95, 100-105.
- [2] G. L. Yuan, C. Yu and J. L. He, Biosens. Bioelectron., 2015, 72, 237-246.
- [3] S. K. Vashist, E. M. Schneider and J. H. Luong, *Biosens. Bioelectron.*, 2015, 66, 169-176.

- [4] T. H. Ji, D. Liu and D. Wang, Chem. Commun., 2016, 52, 8452-8454.
- [5] R. K. Gupta, A. Periyakaruppan and J. E. Koehne, *Biosens. Bioelectron.*, 2014, 59, 112-119.
- [6] T. Z. Liu, R. Hu and X. Zhang, Anal. Chem., 2016, 88, 12516-12523.
- [7] F. F. Su, S. Zhang and H. F. Ji, ACS Sens., 2017, 2, 998-1005.
- [8] Z. Y. Tang, J. L. He and J. Chen, Biosens. Bioelectron., 2018, 101, 253-259.
- [9] C. S. Liu, C. X. Sun and J. Y. Tian, Biosens. Bioelectron., 2017, 91, 804-810.