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Table S1. Amount of different reagents employed to obtain PUS samples with different
molecular weights.

PUS sample CDTPA ABCVA MEO;MA THPMA
(mg) (mg) (mL) (mL)
PUS; 15 4 1.8 0.2
PUS,, 8 3 1.8 0.2
PUS; 5 2 1.8 0.2
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Scheme S1. Synthetic procedure employed to obtain the PEGylated, DBCO-modified
ultrasound-responsive material, HY BRID, -PEG-DBCO.
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Scheme S2. Synthesis scheme employed to obtain RGD-Nj; by standard solid-phase
techniques using Fmoc-coupling chemistry.
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Figure S1. '"H NMR spectrum and 'H NMR COSY of MAL-PEG-DBCO in MeOD.

'"H NMR (250 MHz, MeOD) & 7.69 (ddd, J = 14.0, 10.2, 3.8 Hz,2H, 2xCHAr, DBCO), 7.60 — 7.51 (m,
2H, 2xCHAr, DBCO), 7.49 (m, 4H, 2xCH, maleimide, 2xCHAr, DBCO), 7.39 (ddd, J = 8.9, 3.7, 2.2 Hz,
2H, 2xCHAr, DBCO), 7.30 (dt, J = 8.7, 5.1 Hz, 2H, , 2xCHAr, DBCO), 5.20 (s, J = 8.6 Hz, 1H, CH,,
DBCO), 5.15 (s, 1H, CH,, DBCO), 4.02 — 3.86 (m, 2H, CH,-N, maleimide), 3.66 (s, broad, 364 H,
90x(CH,-CH,-0), PEG), 3.22 — 3.02 (m, 2H, CH,-NHCO), 2.96 — 2.76 (m, 2H, CH,-NHCO), 2.65 — 2.37
(m, 4H, 2xCH,-CONH), 2.26 (dd, J = 13.0, 5.8 Hz, 2H, CH,, maleimide chain), 2.08 (dd, J = 12.5, 5.4
Hz, 2H, CH,, maleimide chain), , 1.82 — 1.57 (m, 2H, CH,, maleimide chain), 1.58 — 1.46 (m, 2H, CH,,
maleimide chain).
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Figure S2. '"H NMR spectrum of RGD-Nj in D,0.
'"H NMR (250 MHz, D,0) 6 4.58 (1H, CH, Cys); 4.35 — 4.10 (2H, 2xCH, Arg), 3.60 (s,
broad, 2H, CH,, Gly), 3.33 — 3.13 (m, 3H, CH,, Cys, CH Lys-Nj3), 2.85 (s, broad, 4H,
2xCH,, Arg), 2.83 — 2.64 (m, 2H, CH,, Asp), 1.60 (s, broad, 6H, 2xCH,, 2xArg, CH,,
Lys-N3), 1.50 (s, broad, 8H, 2xCH,, Lys-N3, 2xCH,, 2xArg).
MALDI/TOF/TOF= 713.080 m/z [M*-SH] (100%);
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Figure S3. 'H NMR spectra of PUS; (left) and PUS; -PEG (right) in CDCl;.
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Figure S4. Characterization of the obtained materials by N, adsorption/desorption:
adsorption isotherms (A), pore size distribution (B) and by thermogravimetric analysis

(©).
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Figure S5. Suspension stability experiments of the prepared nanoparticles performed by
DLS at different time points in suspension in 1 mM PBS. * The sample HYBRID was
completely aggregated after 1 h, and no valid measurement could be performed

afterwards.



Copper-Free Azide—Alkyne Cycloaddition with TAMRA-N;

To react TAMRA-N; with MAL-PEG-DBCO, 2 mg of MAL-PEG-DBCO were
dissolved in 300 puL of PBS and 2 pL of the stock TAMRA-Nj; solution were added (1
mg/mL in DMSO). The mixture was stirred at 37 °C for 1 h. Then, the polymer was
purified by G-25 Sephadex column size exclusion chromatography.

For the reaction of TAMRA-N; with PUS;-PEG-DBCO, 10 mg of PUS; -PEG-
DBCO were dissolved in 1 mL of cold deionized (DI) water, and 2 pL of the stock
TAMRA-N; solution were added. The mixture was stirred at 4 °C overnight, and the
polymer was then precipitated in diethyl ether and centrifuged.

To conjugate TAMRA-N; with DBCO-modified hybrid, 3 mg of HYBRID,-
PEG-DBCO were dispersed in 500 pL of DI water, and 6 pL of the stock TAMRA-N;
solution were added. The mixture was stirred at 4 °C overnight. The material was then
collected by centrifugation and thoroughly washed with ethanol and cold water.

TAMRA fluorescence emission was then checked in DI water (Ex: 555 nm; Em:

575 nm) (Figure S2).
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Figure S6. Reaction with TAMRA-N; of MAL-PEG-DBCO (left), PUS; -PEG-DBCO
(center) and HYBRID; -PEG-DBCO (right). Control experiments were performed using
MAL-PEG-OMe, PUS,-PEG and HYBRID, -PEG.



