Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Supporting information

A rhodamine-based fast and selective fluorescent probe for monitoring exogenous and endogenous nitric oxide in live cells

Qing Wang,^a Xiaojie Jiao,^b Chang Liu,^b Song He,^b Liancheng Zhao^{a,b} and Xianshun Zeng*^{ab}

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

^b Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science &

Engineering, Tianjin University of Technology, Tianjin 300384, China. Email: xshzeng@tjut.edu.cn.

Table	of	Contents
-------	----	----------

Table of Contents
General methods3
Table S14
Fig. S15
Fig. S25
Fig. S36
Fig. S46
Fig. S57
Fig. S68
Fig. S78
Fig. S89
Fig. S99
Fig. S1010
Fig. S1110
Fig. S1211
Fig. \$1311
Fig. S1412
Fig. S1512
Fig. S1613
Fig. S1713
References

General methods

DEA/NONOate (diethylamine NONOate), ascorbic acid (AA), KO₂, H₂O₂, NaClO, NaNO₂, NaNO₃, LPS and N^G-monomethyl-L-arginine (L-NMA) were obtained from commercial sources and used without additional purification. Hydroxyl radicals ('OH) were generated by reaction of Fe²⁺ with H₂O₂.¹ Peroxynitrite (ONOO⁻) was generated from amyl nitrite and H₂O₂ following literature procedures and the concentration of the ONOO⁻ stock solution was determined by measuring the absorbance at 302 nm ($\epsilon = 1670 \text{ M}^{-1} \text{ cm}^{-1}$).²

The stock solution of NO was produced by adding H_2SO_4 (20 %) to sodium nitrite solutions and bubbling NO into water for 20 min.³ The concentration of the NO solution was determined by the Griess method.⁴ Aliquots (50 µL) of this solution were added to 1 mL of potassium phosphate buffer (0.1 mM, pH 7.4) containing sulfanilamide solution (17 mM) and N-(1-naphthyl)ethylenediamine (0.4 mM). The solution was immediately mixed by inversion and incubated at room temperature for 5 min. The colorimetric product was measured at 496 nm by use of a UV/Vis spectrophotometer. The NO concentration of the solution was calculated according to Beer's law using an extinction coefficient of 5400 M⁻¹ cm⁻¹ as determined from experiments using chemiluminescence standardization. Based on this method, the concentration of the NO stock solution is 1.2 mM.

Probes	Structure	References	pH usage value	Response time	Detection limit
DAN	NH ₂	Anal. Biochem. 1993, 214 , 11.	In acidic condition	< 5 min	10 nM
DAF-n		Angew. Chem. Int. Ed., 1999, 38 , 3209; Anal. Chem., 1998, 70 , 2446	> 6	> 10 min (DAF-2)	5 nM (DAF- 2)
DAR-n		Anal. Chem., 2001, 73 , 1967	> 4	-	7 nM (DAR- 4M)
RB-NO		Org. Lett., 2008, 10 , 2357	> 5	30 min	3.0 nM
SiRB-NO	N SI N N N N N N N N N N N N N N N N N N	Chem. Eur. J., 2016, 22 , 5649	Fl intensity changed with pH	> 30 min	32.6 nM
ROPD	NH ₂ H Cr Cr N COOEt	This paper	4.0-9.3	2.5 min	68.2 nM

	Table S1 Com	parison of different fluor	escent probes f	or NO Detection
--	--------------	----------------------------	-----------------	-----------------

Fig. S1 HRMS spectrum of the solution of **ROPD** after the addition of 10 equiv. of NO. The peak (m/z) at 517.2245 corresponds to the triazole derivative **4** (Calcd: 517.2239).

Fig. S2 The absorption a) and fluorescence emission b) spectra of **ROPD** (5 μ M) in the presence of 20 equivalents of NO solution (black line) and the triazole **4** (5 μ M) (red line) in PBS (100 mM, pH 7.4).

Fig. S3 Measurement of fluorescence dissociation constant (K_d) of ROPD with NO.

Fig. S4 The detection limit of **ROPD** (2.5 μ M) towards NO by 3 σ /k in PBS buffer (100 mM, pH = 7.4). The detection limit was calculated based on the fluorescence titration. The emission intensity of the probe **ROPD** without nitric oxide was measured by 8 times, and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

$$LOD = 3\sigma/k$$

Where σ is the standard deviation of the blank solution measured by 8 times; *k* is the slope of the calibration curve.

From the graph we get slope (k) = 15055830, and σ value is 0.3423

Thus we get the Limit of Detection (LOD) = $3\sigma/k$ = 68.2 nM.

Fig. S5 a) Histogram of the fluorescence enhancement ratio $((F_i - F_0)/F_0)$ of **ROPD** (5 μM) at 581 nm in the presence of various metal ions (100 μM). 0: **ROPD**, 1: NO, 2: AgNO₃, 3: Al(NO₃)₃, 4: Ca(NO₃)₂, 5: Cd(NO₃)₂, 6: Co(NO₃)₂, 7: Cr(NO₃)₃, 8: Cu(NO₃)₂, 9: FeCl₂, 10: FeCl₃, 11: Hg(ClO₄)₂, 12: KNO₃, 13: Mg(NO₃)₂, 14: MnCl₂, 15: NaNO₃, 16: Ni(NO₃)₂, 17: Pb(NO₃)₂, 18: Zn(NO₃)₂; b) Change ratio ((F_i - F₀)/F₀) of fluorescence intensity (581 nm) of **ROPD** (5 μM) upon addition of each metal ions (100 μM) followed by NO (100 μM) in PBS buffer solution (100 mM, pH = 7.4). 1: probe **ROPD** after addition of NO alone, and in the presence of 2: AgNO₃, 3: Al(NO₃)₃, 4: Ca(NO₃)₂, 5: Cd(NO₃)₂, 6: Co(NO₃)₂, 7: Cr(NO₃)₃, 8: Cu(NO₃)₂, 9: FeCl₂, 10: FeCl₃, 11: Hg(ClO₄)₂, 12: KNO₃, 13: Mg(NO₃)₂, 14: MnCl₂, 15: NaNO₃, 16: Ni(NO₃)₂, 17: Pb(NO₃)₂, 18: Zn(NO₃)₂; λ_{ex}: 505 nm. Slit: 10 nm, 10 nm.

Fig. S6 ¹H NMR spectrum of **2** (400 MHz, CDCl₃).

Fig. S7 ¹³C NMR spectrum of 2 (100 MHz, CDCl₃).

Fig. S8 HRMS of **2**. HRMS: $m/z [M + H^+] = 508.1884$; Calcd for $[C_{30}H_{25}N_3O_5 + H^+]$: 508.1873.

Fig. S9 ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

Fig. S10 ¹³C NMR spectrum of 3 (100 MHz, CDCl₃).

Fig. S11 HRMS of **3**. HRMS: m/z [M - Cl⁻] = 536.2196; Calcd for $C_{32}H_{30}N_3O_5^+$ = 536.2186.

Fig. S13 ¹³C NMR spectrum of probe ROPD (100 MHz, CDCl₃).

Fig. S14 HRMS of probe **ROPD**. HRMS: m/z [M - Cl⁻ + H⁺]/2 = 253.6264, [M - Cl⁻] = 506.2443; Calcd for $[C_{32}H_{32}N_3O_3^+ + H^+]/2 = 253.6261; [C_{32}H_{32}N_3O_3^+] = 506.2444.$

Fig. S15 ¹H NMR spectrum of the triazole **4** (400 MHz, CDCl₃).

Fig. S16 ¹³C NMR spectrum of triazole 4 (100 MHz, CDCl₃).

Fig. S17 HRMS of triazole **4**. HRMS: $m/z [M - Cl^{-}] = 517.2253$; Calcd for $[C_{32}H_{29}N_4O_3^{+}] = 517.2240$.

References

[1] (a) H. H. Fenton, *Chem. News*, 1876, **33**, 190; (b) A. E.Albers, B. C. Dickinson, E. W. Miller and C. J. Chang, *Bioorg. Med. Chem. Lett.*, 2008, **18**, 5948.

[2] R. M. Uppu and W. A. Pryor, *Anal. Biochem.*, 1996, **236**, 242.

[3] J. Ouyang, H, Hong, C. Shen, Y. Zhao, C. Ouyang, L. Dong, J. Zhu, Z. Guo, K. Zeng, J. Chen, C. Zhang and J. Zhang, *Free Radic. Biol. Med.*, 2008, **45**, 1426.

[4] L. A. Ridnour, J. E. Sim, M. A. Hayward, D. A. Wink, S. M. Martin, G. R. Buettner and D. R. Spitz, *Anal. Biochem.*, 2000, **281**, 223.