Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Biosynthetic Calcium Doped Biosilica with Multiple Hemostatic

Performances for Hemorrhage Control

Jing Li,‡^a Jichang Han,‡^{ab} Qingjie Sun,^c Yanan Wang,^a Yuzhi Mu,^a Kaichao Zhang,^a Xiaoyu Dou,^a

Ming Kong,^a Xiguang Chen,^{ad} and Chao Feng^{*a}

^a College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003,

China.

^b Key Laboratory of Mariculture, Ocean University of China, 5# Yushan Road, Qingdao 266003,

China.

^c College of Food Science and Engineering, Qingdao Agricultural University, 700# Changcheng

Road, Qingdao 266109, China.

^d Qingdao National Laboratory for Marine Science and Technology, 1# Wenhai Road, Qingdao

266237, China.

‡ Jing Li and Jichang Han contributed equally to this work.

* Corresponding Authors:

E-mail: fengchao@ouc.edu.cn.

Contents:

Supplementary figures (Fig. S1-S5)

Fig. S1 Growth curve of *Coscinodiscus* sp. under different concentration of $CaCl_2$ solution. (n = 3) Growth was not affected when calcium chloride concentration below 1 mmol/L, it was inhibited at

2 mmol/L.

Fig. S2 X-ray powder diffraction spectra of Biosilica and Ca-biosilica before and after calcine treatment. The main component before calcination was amorphous silica, but showed

crystalline structure after calcination.

Fig. S3 Hemolysis ratio of Biosilica: (A) supernatant after different extraction time; (B) sample solution after different ultrasonic treatment time. (n = 5) Hemolysis ratio of extract liquid was less than 3%, but after bubbles that may be contained inside the Biosilica were removed by sonication, hemolysis ratio still above 7%. This demonstrated that the hemolysis ratio of Biosilica was

irrelevant to soluble substance and pore construct.

Fig. S4 CLSM images of MEFs treated with Biosilica and Ca-biosilica at different concentrations

for 24 h incubation, the results were basically consistent with the results of cell viability.

Fig. S5 *In vitro* degradation behavior in PBS at pH 7.4, SEM images of Biosilica and Ca-biosilica at 0 day, 5 days, 10 days and 15 days, respectively. Each experiment group was conducted at three different magnifications, no changes were observed on the microstructure of the Biosilica and Ca-

biosilica, all the pores maintained their original structural integrity.