Supporting information

Anion directing self-assembly of 2D and 3D water-stable silver(I)

nano-porous metal organic frameworks and their applications in

real-time discriminating Cysteine and DNA detection

Xin Rui Wang^{a,b}, Jing Du^{a,b}, Zhuo Huang^{a,b}, Kun Liu^{a,b}, Yuan Yuan Liu^{a,b}, Jian Zhong Huo^{a,b}, Zhong Yi Liu^{a,b}, Xiao Yu Dong^{a,b}, Li Li Chen^{a,b} and Bin Ding^{a,b*}

^aKey Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China

^cState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China *To whom correspondence should be addressed.

E-mail: <u>hxxydb@tjnu.edu.cn</u> Received Date (automatically inserted by publisher)

Experimental details of synthesis and characterizations for MOF 1 and

2

1. General methods.

The L Ligand was prepared according to reported methods¹. All reagents were purchased commercially and used without further purification. DNA sequences used in this study were synthesized by Shanghai Sangon Biotechnology Co. Ltd (Shanghai, China): Deionized water was used as solvent in this work. C, H, and N microanalyses were carried out with a Perkin-Elmer 240 elemental analyzer. Poweder X-Ray Diffraction (PXRD) was determined on a D/Max-2500 X-ray diffractometer using Cu-Kα radiation. FT-IR spectra (4000-500 cm-1) were recorded using a NICOLET 6700 FT-IR spectroscope with KBr pellets (NICOLET, USA). ultrasonic preparation was carried by a SB-100DT Ultrasonic bath (XJ Biotechnology Instrument, ZheJiang, china). Ultraviolet-visible (UV-vis) adsorption spectra were collected on a PerkinElmer Lambda 35 spectrophotometer. Photo-luminescent sensing measurements were performed on an Cary Eclipse fluorescence spectrophotometer (Agilent Technologies) equipped with a plotter unit and a quartz cell (1 cm × 1 cm) in the phosphorescence mode. The morphology and size of **2** were characterized by both Nova-Nano 230 scanning electron microscope (SEM; FEI instrument, USA) with gold coating and Tecnai G² F20 Transmission Electron Microscope (TEM; FEI instrument, USA). Zeta potential was measurements were performed on Nano-ZS, Worcestershire, (Malvern, UK). The N_2 sorption isotherm tests were characterized by Micromeritics ASAP 2020 HD88 surface area and porosimetry system (Micromeritics instrument, USA).

DNA sequences:

FAM-P: 5'-ACCAATCTCAAAGCAAATTA-3'-FAM FAM-P': 5'- GGTGGTGGGGGGGGGGTTGGTAGGGTGTCTTC-3'-FAM T: 5'-TAATTTGCTTTGAGATTGGT-3'

R: 5'-ACGGCTGGTCGTACATCGCT-3'

2. X-ray Data Collection and Structure Determinations

X-ray Crystallography. Diffraction intensities for 1-2 were collected on a Bruker SMART 1000 CCD diffractometer with graphite-monochromated Mo-K α radiation (λ = 0.71073 Å) by using the ω - ϕ scan technique. Lorentz polarization and absorption corrections were applied. The structures were solved by direct methods and refined with the full-matrix least-squares technique using the SHELXS-97 and SHELXL-97 programs. Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The organic hydrogen atoms were generated geometrically; the hydrogen atoms of the water molecules were located from difference maps and refined with isotropic temperature factors. Analytical expressions of neutral-atom scattering factors were employed, and anomalous dispersion corrections were incorporated². The crystallographic data and details of refinements for 1-2 were summarized in Table S1, the selected bond lengths and angles were listed in Table S2, and the selected hydrogen bonds lengths [Å] and angles [°] calculated with the program PLATON were listed in Tables S3. CCDC: 1439109 for 1 and 1439108 for 2, contained the supplementary crystallographic data for this work. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

3. Computational Details.

DFT and TDDFT calculations were performed with the Gaussian 09 program³ and the molecular orbitals were analyzed using Gaussview software. PBE0⁴ functional with SDD⁵ basis set were used for Ag and 6-31+g* basis set for all other atoms. SMD solvation model and the water solvent in the experiments was used for solvent effects. The first 20 excited states of coordination polymer were calculated in all TDDFT calculations.

3

4. Preparation of $\{[Ag(L)_2]BF_4\}_n$ (1) (method 1).

L (1.74g, 10 mmol) with deionized water (10mL) were transfer into the beaker. They were heaed and stirred for 3 min until boiling, and then 10ml silver tetrafluoroborate (1.9467 g, 10 mmol) aqueous solution were transferred into the beaker instantly. The resulting colorless block-shaped crystals were washed several times by water. The yield of **1** was 41% based on **L**. Elemental analysis found (%) for: C 50.63, H 4.35, N 26.10; calcd: C 50.94 H 4.75, N 26.40. FT-IR data (cm⁻¹): 3406 (m), 3336(w), 3129 (w), 1616 (w), 1518 (m), 1443(m), 1283(w), 1254 (w), 1142 (m), 875(w), 808(w), 673(w), 503(w).

Preparation of $\{[Ag_3(L)_3] \cdot (H_2O) \cdot (CF_3SO_3)_3\}_n$ (2) (method 1).

L (1.74g, 10 mmol) with deionized water (10mL) were transfer into the beaker. They were heaed and stirred for 3 min until boiling, and then 10ml Silver trifluoromethanesulfonate (2.5694g, 10 mmol) aqueous solution were transferred into the beaker instantly. The resulting colorless block-shaped crystals were washed several times by water. The yield of **1** was 58% based on L. Elemental analysis found (%) for: C 26.95, H 1.96, N 12.47; calcd: C 27.52, H 2.31, N 12.84. FT-IR data (cm⁻¹): 3411(w), 3358(w), 3202(w), 3124(w), 1614 (m), 1518(m), 1271(m), 775(m), 636(w), 516(w).

Preparation of $\{[Ag_3(L)_3] \cdot (H_2O) \cdot (CF_3SO_3)_3\}_n$ (2) (method 2).

L (1.74g, 10 mmol), Silver trifluoromethanesulfonate (2.5694g, 10 mmol) and 20 ml distilled water were transferred into the beaker. The beaker was transferred in the ultrasonic bath. Then, the ultrasonic bath was performed for 60 min, at a power of 100 W. The resulting precipitates were isolated by centrifugation, washed with distilled water and dried in air. The resulting colorless block-shaped crystals were washed several times by water. The yield of **2** was 63% based on L.

5. Details of the amino acids sensing experiments

Ground samples of **1** (0.01g) were dispersed in the aqueous solutions (100 ml) with the aid of ultrasonic treatment for 30min and then obtained solutions (0.1g/L). The displayed emissions bands located around 290 nm (excited at 280 nm) (Fig.S8). Selectivity experiments towards various amino acids were conducted by adding 5µm of L-Histidine, Glycine, L-Arginine, Threonine, L-Methionine, L-Leucine, L-Serine, Creatine, L-Valine, L-cystine, L-Phenylalanine, D-Cysteine and L-Cysteine under the established conditions.

6. Details of the DNA sensing experiments

DNA buffer solutions were prepared by dissolving DNA (P, T, R) into PBS buffer (pH 7.4). Each DNA probe was diluted to a 1 μ m concentration using PBS buffer. Then, 0.017 μ m P, 0.017 μ m T and 0.003g/L MOF **2** were mixed in PBS buffer and incubated for 15 min at room temperature then the fluorescence intensity was measured.

7. Geometries for MOF 1

Ag	1.02146100	0.74038400	0.40008500
Ν	-0.82826300	-0.08706700	1.36607700
Ν	2.60819900	-0.63090400	-0.44474300
Ν	0.22934400	2.38019200	-1.17627300
Ν	2.41874400	2.11733100	1.86801400
В	-10.09116000	-3.39387600	-2.36283000
F	-9.93432300	-2.12729700	-1.87877700
F	-9.00491100	-3.72613100	-3.14781400
F	-10.18027300	-4.32212700	-1.34089900
F	-11.24944600	-3.46906600	-3.14195100
С	-1.77165800	-0.85618800	0.80624200
с	-1.07176100	-0.27015500	2.69166700
N	-2.49847500	-1.43801500	1.72768700

Ν	-2.06950400	-1.07007300	2.97759900
с	-3.55737300	-2.45376400	1.59044700
Ν	-8.69889100	-1.20182400	3.70844200
с	-7.38836800	-1.44056000	3.25374100
н	-9.01007700	-0.36472800	3.59929700
н	-8.65430800	-1.44948700	4.57224100
Ν	-5.98329400	4.12027700	-1.16357700
с	-6.92757900	4.64205000	-0.36499800
Ν	-5.54839900	5.06237000	-2.04682400
с	-5.48842400	2.75321700	-1.21141400
с	-6.26371800	6.09900200	-1.71262700
Ν	-7.14925400	5.90622900	-0.69947700
с	-1.17332700	2.48470900	-1.20945700
н	0.61114400	3.26362800	-0.94168600
н	0.55586900	2.14175200	-2.08014600
н	-0.55338600	0.15296400	3.36624200
н	-1.89800200	-0.96334600	-0.12930500
с	-4.85864600	-2.05292600	2.20661900
н	-3.25088900	-3.29499300	2.01341200
н	-3.70383000	-2.63676100	0.62818000
с	-5.58357100	-0.97244500	1.73094500
с	-5.41729600	-2.82195200	3.23063300
с	-6.82969400	-0.65528500	2.25182500
н	-5.22078500	-0.43735200	1.03563800
н	-7.30354800	0.09984400	1.92275300
с	-6.65871000	-2.52863000	3.74968100
н	-7.01959100	-3.06578700	4.44621900
н	-4.92898300	-3.56058600	3.57632300
н	-6.16981900	6.93749200	-2.15010700
н	-7.36985600	4.17491600	0.33342200

С	-3.98150300	2.66349400	-1.19430700
н	-5.82645000	2.31855500	-2.03430300
н	-5.84837200	2.25345000	-0.43689500
с	-3.32897500	1.73990400	-1.99013600
с	-3.19163100	3.48055300	-0.37517200
с	-1.84004500	3.38936900	-0.39104900
н	-3.61187000	4.10864500	0.20195800
н	-1.33087100	3.96023600	0.17378700
с	-1.94405800	1.63801800	-1.99832300
н	-1.52090300	0.98654600	-2.54571900
н	-3.84043200	1.16283600	-2.54438100
с	2.82986000	-1.89518000	-0.11024300
N	3.77406000	-2.41684000	-0.90883600
н	2.38749800	-2.36220100	0.58816300
N	4.20894200	-1.47484400	-1.79206200
с	4.26893000	-3.78390000	-0.95667300
н	3.93089000	-4.21865900	-1.77954100
н	3.90896800	-4.28376400	-0.18213300
с	5.77585100	-3.87362400	-0.93956500
с	6.56582100	-3.05657900	-0.12043800
с	6.42836500	-4.79731000	-1.73537400
н	6.14556900	-2.42858400	0.45671300
с	7.91739400	-3.14786000	-0.13629500
н	8.42656800	-2.57699400	0.42854200
с	8.58402700	-4.05240800	-0.95471600
N	9.98679700	-4.15694000	-0.92153900
с	7.81328200	-4.89919600	-1.74356100
н	8.23655000	-5.55058600	-2.29098500
н	5.91690900	-5.37437800	-2.28961900
н	10.36859600	-3.27350400	-0.68695200

н	10.31332100	-4.39538100	-1.82541200
н	2.10754500	2.95433100	1.75889000
н	2.46341100	1.86955600	2.73182500
с	3.72936500	1.87858000	1.41330600
с	4.45891100	0.79042800	1.90927400
н	4.09803100	0.25327100	2.60581200
с	5.70033800	0.49720300	1.39020400
с	6.25907400	1.26611800	0.36620400
н	6.18875000	-0.24144500	1.73588800
с	7.56034700	0.86527900	-0.24996800
С	5.53416200	2.34669500	-0.10949000
н	5.89693500	2.88169100	-0.80477700
Ν	8.61924400	1.88102800	-0.11272800
н	7.86683000	0.02405000	0.17299700
н	7.41390300	0.68237900	-1.21225500
Ν	9.04813100	2.24908200	1.13717100
с	9.34597600	2.46296700	-1.03418600
с	10.04595900	3.04888800	0.85125200
Ν	10.28937100	3.23208800	-0.47435100
н	9.21971800	2.35569700	-1.96972000
н	10.56423500	3.47202300	1.52583500
с	3.49362200	-0.43821300	-1.45786500
н	3.60787000	0.38744500	-1.91385600
с	4.28794100	2.66387100	0.41139700
н	3.81600500	3.42049800	0.08127100

8. Excitation energies, oscillator strengths and selected frontier orbitals of MOF 1

8

Excitation energies and oscillator strengths:

```
Excited State
            1:
                      Singlet-A
                                    4.8031 eV 258.13 nm f=0.0185 <S**2>=0.000
    211 -> 215
                     0.32625
    212 -> 215
                    -0.10852
    214 -> 215
                    0.49482
    214 -> 216
                     0.16523
    214 -> 218
                     0.10281
    214 -> 220
                     0.10396
```

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2839.82432291

Excited State	2:	Singlet-A	4.8403 eV	256.15 nm	f=0.0327	<s**2>=0.000</s**2>
211 -> 21	.6	0.10018				
211 -> 21	.7	-0.10426				
212 -> 21	.5	-0.13045				
212 -> 21	.6	0.42330				
212 -> 21	.7	-0.30890				
212 -> 21	.8	-0.19930				
212 -> 21	.9	0.23221				

Excited State	3:	Singlet-A	4.8585 eV	255.19 nm	f=0.0515	<\$**2>=0.000
211 -> 216		-0.13398				
211 -> 217		-0.25257				
211 -> 219		-0.11161				
212 -> 217		0.10882				
214 -> 216		0.27127				
214 -> 217		0.45989				
214 -> 219		0.12137				
214 -> 222		0.11448				

Excited State	4:	Singlet-A	4.8840 eV	253.86 nm	f=0.0490	<s**2>=0.000</s**2>
207 -> 227		-0.12733				
212 -> 220		-0.10692				
213 -> 215		-0.19887				
213 -> 218		0.26130				
213 -> 219		0.21985				
213 -> 220		0.46949				
213 -> 221		0.12321				
214 -> 218		-0.10139				

Excited State	5:	Singlet-A	4.9101 eV	252.51 nm	f=0.3219	<\$**2>=0.000
214 -> 215		-0.17180				
214 -> 216		0.32169				
214 -> 218		0.42373				
214 -> 219		-0.25281				
214 -> 221		-0.16678				

Excited State	6:	Singlet-A	5.0628 eV	244.89 nm	f=0.0425	<\$**2>=0.000
211 -> 216		0.28794				
211 -> 218		0.26200				
211 -> 219		-0.22880				
212 -> 218		-0.14605				
214 -> 215		-0.15267				
214 -> 216		0.11994				
214 -> 218		-0.22904				
214 -> 219		-0.26583				
214 -> 220		0.14053				

Excited	State	7:
LACICCO	Juic	/.

Singlet-A

5.0972 eV 243.24 nm f=0.0178 <S**2>=0.000

211 -> 216	0.14545
211 -> 218	0.30323
211 -> 221	-0.19569
212 -> 218	-0.16128
213 -> 218	-0.11200
214 -> 216	-0.17992
214 -> 218	0.26179
214 -> 219	0.30751
214 -> 221	-0.15077

Excited State	8:	Singlet-A	5.1264 eV	241.85 nm	f=0.0129	<\$**2>=0.000
213 -> 215		0.24594				
213 -> 216		-0.24260				
213 -> 217		-0.10255				
213 -> 218		0.11469				
213 -> 219		0.44475				
213 -> 221		-0.19340				
214 -> 218		0.11773				

Excited State	9:	Singlet-A	5.1567 e	eV 240.43 nm	f=0.0211	<s**2>=0.000</s**2>
211 -> 215		-0.18029				
211 -> 216		0.19273				
211 -> 218		-0.10718				
211 -> 219		-0.18979				
212 -> 215		0.11248				
212 -> 216		-0.14264				
212 -> 217		-0.15443				
212 -> 218		0.19664				
212 -> 219		0.16034				
212 -> 220		-0.13436				

212 -> 221	0.12567
213 -> 219	-0.17207
213 -> 221	0.16510
214 -> 215	0.13061
214 -> 218	0.10342
214 -> 221	0.23511
214 -> 224	-0.10415

Excited State	10:	Singlet-A	5.2017 eV	238.35 nm	f=0.0890	<\$**2>=0.000
211 -> 215	5	0.24973				
211 -> 218	3	0.13949				
212 -> 217	7	-0.22642				
212 -> 218	3	0.28049				
212 -> 22()	-0.20723				
212 -> 221	L	0.27099				
214 -> 215	5	-0.21342				
214 -> 219	Ð	0.10608				
214 -> 221	L	-0.12694				

Excited State 11	: Singlet-A	5.2211 eV	237.47 nm	f=0.0038	<\$**2>=0.000
211 -> 215	0.30855				
211 -> 218	-0.13250				
211 -> 220	0.12302				
212 -> 215	-0.12771				
212 -> 217	0.11932				
213 -> 215	-0.22845				
214 -> 215	-0.24619				
214 -> 216	-0.20909				
214 -> 218	0.14378				
214 -> 220	-0.12277				

214 -> 221	0.19987
214 -> 222	0.16507

Excited State	12:	Singlet-A	5.2553 eV	235.92 nm	f=0.0556	<\$**2>=0.000
211 -> 21	5	0.13540				
211 -> 21	7	-0.10198				
212 -> 21	5	-0.16121				
213 -> 21	5	0.51988				
213 -> 21	6	0.18735				
213 -> 22	0	0.20204				
214 -> 21	9	-0.11499				
214 -> 22	2	0.12111				

Excited State	13:	Singlet-A	5.2695 eV	235.29 nm	f=0.0297	<\$**2>=0.000
211 -> 215	5	-0.13391				
211 -> 217	,	-0.18054				
211 -> 218	3	0.18146				
211 -> 220)	-0.11217				
212 -> 216	5	0.23099				
212 -> 217	,	0.12401				
212 -> 218	3	0.13501				
212 -> 222	2	-0.12994				
212 -> 224	L	0.16841				
212 -> 225	5	0.19022				
212 -> 228	3	0.13961				
213 -> 215	5	-0.12220				
214 -> 216	5	-0.10858				
214 -> 217	,	-0.15450				
214 -> 219)	-0.18757				
214 -> 222	2	0.14626				

Excited State 14:	Singlet-A	5.2749 eV	235.05 nm	f=0.0953	<\$**2>=0.000
211 -> 219	0.13029				
211 -> 222	-0.11400				
212 -> 216	-0.15702				
212 -> 217	-0.12055				
212 -> 222	0.20802				
212 -> 224	-0.13068				
212 -> 225	-0.14502				
214 -> 219	-0.13142				
214 -> 221	-0.12995				
214 -> 222	0.30131				
214 -> 223	0.28205				
214 -> 224	0.17177				

Excited State 15:	Singlet-A	5.2966 eV	234.08 nm	f=0.1298	<\$**2>=0.000
211 -> 216	0.24171				
211 -> 217	0.21815				
211 -> 218	-0.11582				
211 -> 219	-0.15022				
211 -> 221	0.13362				
211 -> 222	-0.10415				
212 -> 221	-0.13374				
212 -> 222	-0.12225				
212 -> 224	0.15254				
212 -> 225	0.12709				
214 -> 219	0.19138				
214 -> 221	-0.20539				
214 -> 222	0.12231				
214 -> 223	0.24221				

```
214 -> 224 0.13535
```

Excited State 16:	Singlet-A	5.3015 eV	233.87 nm	f=0.0376	<\$**2>=0.000
211 -> 217	0.19097				
211 -> 218	0.10974				
211 -> 219	0.30777				
211 -> 220	-0.14852				
212 -> 217	-0.12134				
212 -> 219	-0.18934				
212 -> 222	-0.10367				
214 -> 217	0.29312				
214 -> 219	-0.11066				
214 -> 220	-0.10305				
214 -> 221	0.17930				
214 -> 223	0.14336				
214 -> 224	-0.11680				
Excited State 17:	Singlet-A	5.3227 eV	232.93 nm	f=0.0191	<s**2>=0.000</s**2>

Excited State 17:	Singlet-A	5.3227 ev	232.93 nm	T=0.0191	<\$**2>=0.000
211 -> 218	0.12865				
213 -> 216	0.18410				
213 -> 218	0.30736				
213 -> 221	-0.16646				
213 -> 222	0.12462				
213 -> 223	-0.20086				
213 -> 227	-0.22738				
213 -> 229	-0.27545				
213 -> 232	0.10092				
214 -> 220	-0.11005				

Excited State 18: Singlet-A 5.3301 eV 232.61 nm f=0.0581 <S**2>=0.000

211 -> 215	-0.11465
211 -> 216	0.14719
211 -> 219	0.14650
211 -> 223	-0.13050
213 -> 218	0.14221
213 -> 229	-0.10023
214 -> 216	-0.15538
214 -> 217	0.24317
214 -> 218	0.10746
214 -> 219	-0.11594
214 -> 220	0.35450
214 -> 221	-0.16529
214 -> 223	-0.22554

Excited State	19:	Singlet-A	5.3561 eV	231.48 nm	f=0.0087	<\$**2>=0.000
211 -> 217	7	0.17793				
211 -> 219	Ð	0.11065				
211 -> 220)	0.12385				
211 -> 221	L	-0.20190				
211 -> 222	2	-0.16354				
214 -> 216	5	0.28014				
214 -> 217	7	-0.19596				
214 -> 219	9	0.17993				
214 -> 220)	0.16297				
214 -> 221	L	0.24513				
214 -> 222	2	0.25031				
Excited State	20:	Singlet-A	5.3701 eV	230.88 nm	f=0.0137	<\$**2>=0.000

xcited State 20:	Singlet-A	5.3701 eV	230.88 nm	t=0.0137	<s**2>=0.000</s**2>
211 -> 216	0.18055				
211 -> 218	-0.14733				

211 -> 219	0.13011
211 -> 221	-0.30198
212 -> 216	0.12923
212 -> 217	0.30250
212 -> 221	0.12147
212 -> 224	-0.11762
214 -> 218	-0.17592
214 -> 220	-0.18649
214 -> 221	-0.16740

9. FT-IR characterization

FT-IR spectra of MOFs **1** and **2** were recorded to display characteristic absorption bands for triazole, and phenyl moieties of **L** (**Fig.** S7). The peak located at ca. 3400 cm⁻¹ which can be attribute anilino group. The peaks located at ca. 3100 cm⁻¹ and 1100-1300 cm⁻¹ can be attributed to v (C-H) and v (C-N) or v (N-N) of triazole moieties. The triazole out of plane ring absorption was at 630 cm⁻¹. The benzene ring exhibited medium peaks around 1500 cm⁻¹ [2]. The medium narrow peaks ca. 860 cm⁻¹, indicated the phenyl groups in the para-orientation mode.

	1	2
Formula	$C_{18}H_{20}AgBF_4N_8$	$C_{30}H_{30}Ag_3F_9 N_{12}O_{10}S_3$
<i>M</i> (g mol ⁻¹)	543.10	1309.45
crystal	Manaalinia	Managlinia
system	Monocimic	Monoclinic
space group	Сс	Cc
<i>a</i> (Å)	10.1679(9)	20.2784(12)
b (Å)	21.1811(18)	11.6978(7)
<i>c</i> (Å)	9.9402(8)	20.6670(12)
α (º)	90	90
<i>в</i> (º)	92.138(2)	115.4640(10)
γ (º)	90	90
V (ų)	2139.3(3)	4426.2(5)
Z	4	4
F (000)	1088	2576
$ ho_{calc}$ (Mg m ⁻³)	1.686	1.965
μ (mm ⁻¹)	1.000	1.560
data/restraint	2664 (2 / 280	7207 / 2 / 504
s/params	5004/2/289	/20//2/004
GOF on F ²	1.074	1.019
$R_1^{a}(I=2\sigma(I))$	0.0365	0.0266
$\omega R_{2^{a}}$ (all data)	0.0826	0.0571

Table S1. Crystallographic Data and Details of Refinements for MOFs 1-2 ^a

 $- |F_{c}||/|F_{o}|. \qquad {}^{b}\omega R_{2} = [\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})/w|F_{o}|^{2}]^{1/2}.$

Table S2.Selected bond lengths /Å and bond angles /° for MOF 1

Ag(1)-N(1)	2.245(6)	Ag(1)-N(7)	2.261(6)
Ag(1)-N(8)	2.409(6)	Ag(1)-N(4)	2.450(5)
N(1)-Ag(1) -N(7)	121.03(19)	N(1)-Ag(1) -N(8)	105.2(2)
N(7)-Ag(1) -N(8)	113.5(2)		

Table S3.Selected bond lengths /Å and bond angles /° for MOF 2

Ag(1)-N(7)	2.198(4)	Ag(1)-N(1)	2.276(4)
Ag(1)-N(8)	2.363(4)	Ag(1)-O(1)	2.702(4)
Ag(2)-N(11)	2.173(4)	Ag(2)-N(5)	2.249(4)
Ag(2)-N(12)	2.504(4)	Ag(3)-N(3)	2.196(4)
Ag(3)-N(4)	2.295(4)	Ag(3)-N(9)	2.379(4)
N(7)-Ag(1) -N(1)	131.41(15)	N(7)-Ag(1) -N(8)	122.26(14)
N(1)-Ag(1) -N(8)	106.23(14)	N(1)-Ag(1) -O(1)	82.69(13)
N(1)-Ag(1) -O(1)	88.68(14)	N(1)-Ag(1) -O(18)	97.13(13)
N(11)-Ag(2) -N(5)	151.69(15)	N(11)-Ag(2) -N(12)	119.62(14)
N(5)-Ag(2) -N(12)	88.68(14)	N(3)-Ag(3) -N(4)	141.52(15)
N(3)-Ag(3) -N(9)	115.16(14)	N(4)-Ag(3) -N(9)	102.22(15)

Table S4. Hydrogen bonds for MOF 1 [Å and °]^a

D-H···A	d(D-H)	d(H···A)	d(D…A)	<(DHA)
N(4)-H(4A)…F(3)	0.90	2.14	2.9846	156
N(4)-H(4B)…F(2)	0.90	2.26	3.1412	166
N(8)-H(8A)…F(2)	0.99	2.47	3.3669	151
N(8)-H(8A)…F(3)	0.99	2.47	3.3688	150
N(8)-H(8B)…F(1)	0.99	2.00	2.9641	166
C(1)-H(1)…F(4)	0.95	2.36	3.3011	172
C(10)-H(10)…N(3)	0.95	2.45	3.3594	159
C(11)-H(11)…F(1)	0.95	2.42	3.3278	160
C(11)-H(11)…F(4)	0.95	2.44	3.1849	135

Table S5. Hydrogen bonds for MOF 2 [Å and °]^a

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N(4)-H(4B)…O(10)	0.88	2.17	2.9312	144
N(8)-H(8A)…O(3)	0.88	2.32	3.0521	141
N(8)-H(8B)…O(6)	0.88	2.32	2.9837	133
N(12)-H(12A)…O(7)	0.88	2.15	2.9829	157
C(12)-H(12B)…O(2)	0.88	2.33	3.0568	140

L-cysteine	$n_{L-cysteine}$: $n_{D-cysteine}$ =1:1	$n_{L-cysteine}$: $n_{D-cysteine}$ =1:2	D-cysteine
57.3895	7.83398	3.61414	3.42661

Table S6. The Ksv values for addition different amino acids in MOF1.

Fig. S1. The flexibility ligand 1-(4-aminobenzyl)-1,2,4-triazole.

Fig. S2. (a) Powder X-Ray patterns for MOF 1 in different PH buffer solution, in addition of L,Dcysteine aqueous solution. (b) Powder X-Ray patterns for MOF 2 in different PH buffer solution, sonochemical time and different ultrasound irradiation power.

Fig. S3 UV-vis spectra of MOF 1 and animo acids.

Fig. S4 calculated UV/vis absorption of 2D MOF 1.

Fig. S5 UV-vis spectra of P, T and mixture solution of FAM-P, T and 2.

Fig. S6 The N_2 sorption isotherm tests of samples 2.

Fig. S7 FT-IR spectra of MOF 1 isolated by method 1 (a), MOF 2 isolated by method 1 (b), method2 (70 w, 60min) and (c) method 2 (100w, 40min. 100w, 60min. 100w, 80min).

References

- Y. Y. Wang, Q. Jin, S. X. Liu, C. Guo, Y. Y. Liu, B. Ding, X. X. Wu; Y. Li, Z. Z. Zhu, RSC Advances, 2015, 5, 35238.
- 2. F. Simkovic, S. Oychinnikov, D. Baker, D.J. Rigden, Iucrj. 2017, 4, 291.
- Gaussian 09, revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, 2013.

- a) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865; b) J. P.
 Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396; c) C. Adamo, V.
 Barone, J. Chem. Phys. 1999, 110, 6158.
- P. Fuentealba, H. Preuss, H. Stoll, L. Von Szentpály, Chem. Phys. Lett. 1982, 89, 418.