Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Gd@C₈₂(OH)₂₂ harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway

Jiao Lin,^{a,c,#} Rong Cai,^{a,c,#} Baoyun Sun,^{c,d} Jinquan Dong,^{c,d} Yuliang Zhao,^{a,c} Qing

Miao,^{a,b,*} Chunying Chen,^{a,c,*}

- a. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- b. Division of Paediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
- c. University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
- d. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Key Laboratory for Nuclear Techniques, Institute of High Energy Physics, Beijing 100049, P. R. China.
- # Jiao Lin and Rong Cai contributed equally to this work.
- *Correspondence authors:
- Prof. Chunying Chen

National Center for Nanoscience and Technology, Chinese Academy of Science

No.11, Beiyitiao Zhongguancun

Beijing 100190, China

Email: chenchy@nanoctr.cn

Phone: +86 10 8254 5560

Fax: +86-10-62656765

Prof. Qing Miao,

Division of Paediatric Surgery, Department of Surgery, Children's Research Institute,

Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226,

USA

Email: miaoq@nanoctr.cn

Figure S1. The effects of TNF- α , Grade 1 and Grade 2 on osteogenesis of hMSCs. Alkaline phosphatase (ALP) staining was performed, after hMSCs were induced to osteoblasts with the treatment of 10 ng/ml TNF- α , Grade 1 and Grade 2 for 7 days. Inflammatory microenvironment, Grade 1 and Grade 2.

microenvironment (growth medium) and inflammatory microenvironment (Grade 1, Grade 2). After treating hMSCs with 0.05, 0.5, 5, 10 μ M Gd@C₈₂(OH)₂₂ for 1, 3, 6 days, CCK-8 kits were used to measure the cell viability of hMSCs. Experiments were performed in triplicates. The data was presented as the mean ± standard derivation.

Figure S3. The effect of Gd@C₈₂(OH)₂₂ on adipogenesis of hMSCs in Control (adipogenic induction medium, AIM) and inflammatory microenvironment (dilute CM with AIM 50 (Grade 1) and 20 (Grade 2) folds). **(a)** hMSCs were induced to adipocytes with treatment of 0, 0.05, 0.5, 5 and 10 μ M Gd@C₈₂(OH)₂₂ for 10 days, Oil droplets were stained (first row: AIM; second row: Grade 1; third row: Grade 2). **(b)** PPAR γ expression was measured by western blotting after adipogenic differentiation 5 days in different microenvironment. **(c)** PPAR γ expression was measured by RT-PCR after hMSCs were induced to adipocytes with treatment of 0, 0.5, 10 μ M Gd@C₈₂(OH)₂₂ for 5 days. *P<0.05; **P<0.01; ***P<0.001.

Figure S4. Gd@C₈₂(OH)₂₂ regulates osteogenesis by the β -catenin-independent signaling pathway. (a) After 0.05, 0.5 and 10 μ M Gd@C₈₂(OH)₂₂ treatment in normal microenvironment, the expression of β -catenin of hMSCs were analyzed by western blotting. (b) The role of inflammatory cytokines on the β -catenin expression of hMSCs. N: Normal microenvironment; I: inflammatory microenvironment.

Table	S1.	Concentration	of	main	inflammatory	factors	in	inflammatory
microe	nviror	nment						

Inflammatory microenvironment(pg/ml)						
Inflammatory factors	Grade 1	Grade 2				
IL-6	1.3±0.1	3.2±0.2				
TNF-α	1.1±0.1	2.6±0.1				
ΙL-1β	1.1±0.1	2.8±0.1				
IL-10	0.3±0.1	0.9±0.1				

Table S2. Primer of specific osteogenic and adipogenic gene

Gene	Upstream primer	Downstream primer			
GAPDH	5'-CCTGCACCACCAACTGCTTA-3'	5'- GGCCATCCACAGTCTTCTGAG-3'			
PPARy	5'-GCGAGGGCGATCTTGACAGG-3'	5'- TGATCACCTGCAGTAGCTGCAC-3'			
OCN	5'-GGCTCACCCTCCATCACTC-3'	5'- TCCAGCACTGTTTATACCCTCT-3'			