Supporting information for

A ratiometric fluorescent composite nanomaterial for RNA detection

based on graphene quantum dots and molecular probe

Guanghan Li, Yong Liu, Jie Niu, Meishan Pei*, Weiying Lin*

Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.

Email: weiyinglin2013@163.com; chm_peims@ujn.edu.cn

Table of contents

	Page
Figure S1	S3
Figure S2.	S3
Figure S3.	
Figure S4.	S4
Figure S5.	S4
References	S5

Calculation of RNA concentration¹

(1)

RNA concentration was calculated by bellow equation. The ultraviolet absorption intensity standed for size of the electron energy level transition probability and abide by the lambert beer's law (1).

$$A = -\log \frac{I}{I_0} = \varepsilon cl$$

A is absorbancy; ε is extinction coefficient, extinction coefficient of RNA is 7700; c is molar concentration; I is length of sample pool; I_0 and I stand for the intensity of the incident light and transmission light, respectively.

Figure S1. The overlap between the normalized excitation spectrum of HVC-6 and the normalized emission spectrum of GQDs (λ_{ex} = 365 nm).

Figure S2. Fluorescence emission spectra of HVC-6@GQDs with and without RNA (100 μM), λ_{ex} = 365 nm.

Figure S3. Visual fluorescence emission color changes of GQDs (1), HVC-6 (2), HVC-6 with RNA (3), HVC-6@GQDs (4) and HVC-6@GQDs with RNA (5), λ_{ex} = 365 nm.

Figure S4. Viability of the HeLa cells treated with HVC-6@GQDs stock solution at varying volume (0-50 µL).

Figure S5. (A) Mean fluorescence intensity of each channel of fixed HeLa cells pre-treated with RNase. (B) Mean fluorescence intensity of each channel of fixed HeLa cells pre-treated without RNase.

References

1. G. Song, Y. Sun, Y. Liu, X. Wang, M. Chen, F. Miao, W. Zhang, X. Yu and J. Jin, Biomaterials, 2014, 35, 2103.