Supporting information

Dual-Site Lysosome-Targeted Fluorescent Probe for Separate

Detection of Endogenous Biothiols and SO₂ in Living Cells

Ming-Yu Wu*a, Yue Wanga, Yan-Hong Liub, Xiao-Qi Yu*b

a School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China. E-mail: wumy1050hx@swjtu.edu.cn.

b Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China. E-mail: xqyu@scu.edu.cn.

Table of contents

1.	Optical Properties	S1-S10
2.	¹ H NMR, ¹³ C NMR, and HRMS spectrum	S11-S19

1. Optical Properties

Fig. S1 Fluorescent spectra changes of BPO-Py-diNO₂ (10 μ M) interacting with 500 μ M biothiols in near-infrared region. $\lambda_{ex} = 556$ nm. Slit: 10 nm/10 nm.

Fig. S2 Absorption spectra of BPO-Py-3-NO₂ (10 µM) before and after intreacting with 500 µM SO₂.

Fig. S3 Absorption spectra of BPO-Py-5-NO₂ (10 μ M) before and after intreacting with 500 μ M SO₂.

Fig. S4 Fluorescent spectra changes of BPO-Py-3-NO₂ (10 μ M) interacting with 500 μ M biothiols in

near-infrared region. $\lambda_{ex} = 556$ nm. Slit: 10 nm/10 nm.

Fig. S5 Fluorescent spectra changes of BPO-Py-5-NO₂ (10 μ M) interacting with 500 μ M biothiols in near-infrared region. $\lambda_{ex} = 556$ nm. Slit: 10 nm/10 nm.

Fig. S6 pH dependent fluorescent changes of BPO-Py-diNO₂ (10 μ M) and BPO-Py-diNO₂ (10 μ M) interacting with SO₂ (500 μ M). λ_{ex} = 390 nm, λ_{em} = 495 nm, Slit: 5 nm/5 nm.

Fig. S7 pH dependent fluorescent changes of BPO-Py-3-NO₂ (10 μ M) and BPO-Py-3-NO₂ (10 μ M) interacting with SO₂ (500 μ M). λ_{ex} = 390 nm, λ_{em} = 495 nm, Slit: 5 nm/5 nm.

Fig. S8 pH dependent fluorescent changes of BPO-Py-5-NO₂ (10 μ M) and BPO-Py-5-NO₂ (10 μ M)

interacting with SO_2 (500 $\mu M).$ λ_{ex} = 390 nm, λ_{em} = 495 nm, Slit: 5 nm/5 nm.

Content	Quantum yields	Detection limit (nM)
BPO-Py-diNO ₂ (green channel)	0.003	150
BPO-Py-diNO ₂ +SO ₂ (green channel)	0.130	
BPO-Py-3-NO ₂ (green channel)	0.002	66
BPO-Py-3-NO₂ +SO ₂ (green channel)	0.055	
BPO-Py-5-NO ₂ (green channel)	0.006	298
BPO-Py-5-NO ₂ +SO ₂ (green channel)	0.05	
BPO-Py-diNO ₂ (near-infrared channel)	0.0004	202
BPO-Py-diNO ₂ +GSH (near-infrared channel)	0.0015	

Table S1 The quantum yields.

Fig. S9 (a) Fluorescence titration of BPO-Py-3-NO₂ (10 μ M) with SO₃²⁻ (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 μ M) (λ_{ex} = 390 nm, Slit: 5 nm/5 nm) in a 10 mM PBS:DMSO = 8:2 pH 7.0 buffer solution. (b) Linear fit of fluorescence intensity changes with Na₂SO₃.

Fig. S10 (a) Fluorescence titration of BPO-Py-5-NO₂ (10 μ M) with SO₃²⁻ (0, 20, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600 μ M) (λ_{ex} = 390nm, Slit: 5 nm/5 nm) in a 10 mM PBS:DMSO = 8:2 pH 7.0 buffer solution. (b) Linear fit of fluorescence intensity changes with Na₂SO₃.

Fig. S11 Fluorescence spectrum (a) and intensity (b) changes of **BPO-Py-3-NO**₂ (10 μM) interacting with 500 μM amino acids (Arg, Met, Ser, Asp, Gly, Ala, His, Val, Lys, Leu, Glu, Pro, Ile, Phe), reactive oxygen species (H₂O₂, NaClO, TBHP), reactive nitrogen species (NO₃⁻, NO₂⁻) and reactive sulfur species (SO₄²⁻, Cys, Hcy, GSH, H₂S, SO₂) in 10 mM pH 7.0 PBS buffer solution containing 20% DMSO, λ_{ex} = 390 nm. Slit: 5 nm/5 nm. 1. **BPO-Py-3-NO**₂, 2. Ala, 3. Arg. 4. Asp, 5. Glu, 6. Gly, 7. His, 8. Ile, 9. Leu, 10. Lys, 11. Met, 12. Phe, 13. Pro, 14, Ser, 15. Val, 16. H₂O₂, 17, NaClO, 18. TBHP, 19. NO₃⁻, 20. NO₂⁻, 21. SO₄²⁻, 22. Cys, 23. Hcy, 24. GSH, 25. H₂S, 26. SO₂.

Fig. S12 The colour and fluorescence changes of **BPO-Py-3-NO2** (10 μ M) upon addition of 50 equiv. of different species under visible light and UV lamp (E_x = 365 nm). 1. **BPO-Py-3-NO2**, 2. Ala, 3. Arg. 4. Asp, 5. Glu, 6. Gly, 7. His, 8. Ile, 9. Leu, 10. Lys, 11. Met, 12. Phe, 13. Pro, 14, Ser, 15. Val, 16. H₂O₂, 17, NaClO, 18. TBHP, 19. NO₃⁻, 20. NO₂⁻, 21. SO₄², 22. Cys, 23. Hcy, 24. GSH, 25. H₂S, 26. SO₂.

Fig. S13 Fluorescence spectrum (a) and intensity (b) changes of **BPO-Py-5-NO**₂ (10 μM) interacting with 500 μM amino acids (Arg, Met, Ser, Asp, Gly, Ala, His, Val, Lys, Leu, Glu, Pro, Ile, Phe), reactive oxygen species (H₂O₂, NaClO, TBHP), reactive nitrogen species (NO₃⁻, NO₂⁻) and reactive sulfur species (SO₄²⁻, Cys, Hcy, GSH, H₂S, SO₂) in 10 mM pH 7.0 PBS buffer solution containing 20% DMSO, λ_{ex} = 390 nm. Slit: 5 nm/5 nm. 1. **BPO-Py-5-NO**₂, 2. Ala, 3. Arg. 4. Asp, 5. Glu, 6. Gly, 7. His, 8. Ile, 9. Leu, 10. Lys, 11. Met, 12. Phe, 13. Pro, 14, Ser, 15. Val, 16. H₂O₂, 17, NaClO, 18. TBHP, 19. NO₃⁻, 20. NO₂⁻, 21. SO₄²⁻, 22. Cys, 23. Hcy, 24. GSH, 25. H₂S, 26. SO₂.

Fig. S14 The colour and fluorescence changes of **BPO-Py-5-NO**₂ (10 μ M) upon addition of 50 equiv. of different species under visible light and UV lamp (E_x = 365 nm). 1. **BPO-Py-5-NO**₂, 2. Ala, 3. Arg. 4. Asp, 5. Glu, 6. Gly, 7. His, 8. Ile, 9. Leu, 10. Lys, 11. Met, 12. Phe, 13. Pro, 14, Ser, 15. Val, 16. H₂O₂, 17, NaClO, 18. TBHP, 19. NO₃⁻, 20. NO₂⁻, 21. SO₄², 22. Cys, 23. Hcy, 24. GSH, 25. H₂S, 26. SO₂.

Fig. S15 Fluorescent spectra of compound 5 and probes interacting with SO₂. $\lambda_{ex} = 390$ nm. Slit: 5 nm/5

Fig. S16 ¹H NMR spectra of 5 mM **BPO-Py-5-NO**₂ and 5 mM **BPO-Py-5-NO**₂ with 10 equiv. sulfite in the mixture solvent of DMSO-d₆: D₂O = 3:2

nm.

Fig. S17 Cell viability of BPO-Py-3-NO₂ by a standard CCK-8 assay in living Hela cells for 24 h. The

experiment was repeated three times (\pm S.D.).

Fig. S18 Cell viability of BPO-Py-5-NO2 by a standard CCK-8 assay in living Hela cells for 24 h. The

experiment was repeated three times (±S.D.).

Fig. S19 Confocal images of SO₂ in living Hela cells. (a-c) Hela cells incubated with 10 μ M **BPO-Py-3-NO**₂ for 30 min; (d-f) Hela pretreated with 10 μ M **BPO-Py-3-NO**₂ for 30 min, and then further incubated with 500 μ M Na₂SO₃ for another 90 min. The fluorescence imaging was collected from 450–470 nm with excitation at 405 nm.

Fig. S20 Confocal images of SO₂ in living Hela cells. (a-c) Hela cells incubated with 10 μ M **BPO-Py-5-NO**₂ for 30 min; (d-f) Hela pretreated with 10 μ M **BPO-Py-5-NO**₂ for 30 min, and then further incubated with 500 μ M Na₂SO₃ for another 90 min. The fluorescence imaging was collected from 450–470 nm with excitation at 405 nm.

2. ¹H NMR, ¹³C NMR, and HRMS spectrum

