Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

## Electronic Supplementary Information

for

## New Class of Artificial Enzyme Composed of Mn-Porphyrin, Imidazole and Cucurbit[10]uril Toward Therapeutic Antioxidant

Riku Kubota\*a, Taiga Takabea, Kohe Arimaa, Hideaki Taniguchi, Shoichiro Asayamaa

and Hiroyoshi Kawakami\*a

\*E-mail: r-kubota@tmu.ac.jp

kawakami-hiroyoshi@tmu.ac.jp

<sup>a</sup>Department of Applied Chemistry, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo 192-0397, Japan.



**Fig. S1** ESI-MS spectrum of ZndMIm<sub>4</sub>P@CB[10]. [ZndMIm<sub>4</sub>P@CB[10]]<sup>4+</sup>; Anal: 603.92. Found: 603.98. [ZndMIm<sub>4</sub>P@CB[10] • Cl<sup>-</sup>]<sup>3+</sup>; Anal: 816.91. Found: 816.97.



Fig. S2 ESI-MS spectrum of MndMIm<sub>4</sub>P@CB[10].
[MndMIm<sub>4</sub>P@CB[10] • 2OH<sup>-</sup>]<sup>3+</sup>; Anal: 813.26. Found: 813.32.
[MndMIm<sub>4</sub>P@CB[10] • 2Cl<sup>-</sup>]<sup>3+</sup>; Anal: 825.57. Found: 825.64.



Fig. S3 UV/vis spectrum of 17.8  $\mu$ M ZndMIm<sub>4</sub>P alone (solid line) and 17.8  $\mu$ M ZndMIm<sub>4</sub>P@CB[10] (dotted line) in pure water.

ZndMIm<sub>4</sub>P  $\lambda_{max}$ : 418 nm, 551 nm, 587 nm.

ZndMIm<sub>4</sub>P@CB[10] λ<sub>max</sub>: 419 nm, 551 nm, 587 nm.



**Fig. S4** UV/vis spectrum of 9.0 µM MndMIm<sub>4</sub>P (solid line) and 9.0 µM MndMIm<sub>4</sub>P@CB[10] (dotted line) in 25 mM phosphate buffer (pH 7.4).

MndMIm<sub>4</sub>P  $\lambda_{max}$ : 443.5 nm, 558.5 nm, 589.5 nm.

MndMIm<sub>4</sub>P@CB[10]  $\lambda_{max}$ : 447 nm, 553 nm, 586.5 nm.



Fig. S5 DOSY spectrum of ZndMIm<sub>4</sub>P alone ( $25^{\circ}C$ , 500 MHz, D<sub>2</sub>O).



**Fig. S6** DOSY spectrum of ZndMIm<sub>4</sub>P@CB[10] (25°C, 500 MHz, D<sub>2</sub>O).



**Fig. S7** Fluorescent spectrum of ZndMIm<sub>4</sub>P (blue) and ZndMIm<sub>4</sub>P@CB[10] (orange) in pure water measured at the same concentration per ZndMIm<sub>4</sub>P (7.5  $\mu$ M). ZndMIm<sub>4</sub>P and ZndMIm<sub>4</sub>P@CB[10] were excited at 423.5 nm where absorbance of ZndMIm<sub>4</sub>P and ZndMIm<sub>4</sub>P@CB[10] are identical.



Fig. S8 DFT-minimized geometry of ZndMIm<sub>4</sub>P@CB[10] (B3LYP/6-31G\*). (a) side view, (b) top view.



Fig. S9 Job's plot for mixtures of ZndMIm<sub>4</sub>P@CB[10] and imidazole at a total concentration of 0.5 mM.



**Fig. S10** Plot of the chemical shift (a<sub>1</sub>  $\stackrel{\prime}{}$  of 1.0 mM ZndMIm<sub>4</sub>P@CB[10]) as a function of imidazole concentration. The curve fitting analysis using TitrationFit program to determine  $K_{a2} = 6.8 \times 10^5 \text{ M}^{-2}$ .



**Fig. S11** Absorption spectral changes of 20  $\mu$ M MndMIm<sub>4</sub>P@CB[10] in the presence of imidazole in 100 mM phosphate buffer (pH 7.4). Concentration of imidazole ranged from 0 to 140  $\mu$ M.



**Fig. S12** Job's plot analysis for mixture of MndMIm<sub>4</sub>P@CB[10] and imidazole at a total concentration of 50 μM.



Fig. S13 Plot of absorbance at 550 nm of 20  $\mu$ M MndMIm<sub>4</sub>P@CB[10] as a function of imidazole concentration. The curve fitting analysis using TitrationFit program to determine  $K_{a2} = 3.0 \times 10^8 \text{ M}^{-2}$ .



**Fig. S14** Absorption spectral changes of MndMIm<sub>4</sub>P@CB[10] in the presence of various concentrations of imidazole (0 ~ 500  $\mu$ M). The spectral changes were monitored in water under acidic or basic conditions. (a) 100 mM acetate buffer (pH 4.5). (b) 100 mM phosphate buffer (pH 11). Insets show plots of absorbances of Soret bands as functions of imidazole concentration. The monitoring was performed at the lower MndMIm<sub>4</sub>P@CB[10] concentration (3.5  $\mu$ M) than 20  $\mu$ M (Fig. S11 and S13) due to unexpected precipitation of MndMIm<sub>4</sub>P@CB[10].



**Fig. S15** Absorption spectral changes of 25  $\mu$ M MndMIm<sub>4</sub>P alone in 100 mM phosphate buffer (pH 7.4) in the presence of various concentrations of imidazole. (a) From 0  $\mu$ M to 200  $\mu$ M. (b) From 25 mM to 250 mM (large excess). Insets show plots of absorbance as functions of [Imidazole].



**Fig. S16** Cyclic voltammogram of MndMIm<sub>4</sub>P alone (blue), MndMIm<sub>4</sub>P@CB[10] (red), mixture of MndMIm<sub>4</sub>P and imidazole (six equivalents for MndMIm<sub>4</sub>P) (purple), and MndMIm<sub>4</sub>P@CB[10] (green). Supporting electrolyte: 10 mM phosphate buffer (pH 7.0) containing 50 mM Na<sub>2</sub>SO<sub>4</sub>. Scanning rate: (a) 50 mV/s, (b) 100 mV/s.

|                                 | E <sub>1/2</sub> for Mn <sup>III/II</sup><br>(mV vs NHE) <sup>a</sup> |
|---------------------------------|-----------------------------------------------------------------------|
| MndMIm <sub>4</sub> P           | + 280                                                                 |
| MndMIm <sub>4</sub> P@CB[10]    | + 270                                                                 |
| $MndMIm_4P + Im$                | + 280                                                                 |
| MndMIm <sub>4</sub> P@CB[10];Im | + 280                                                                 |

**Table S1** Redox potential  $(E_{1/2} \text{ for } Mn^{III/II} \text{ redox}$ couple) versus normal hydrogen electrode (vs NHE).

<sup>*a*</sup>E<sub>1/2</sub> values (vs Ag/AgCl) obtained from Fig. S16 were converted to those vs NHE by adding 200 mV. For stoichiometric formation of MndMIm<sub>4</sub>P@CB[10];Im, MndMIm<sub>4</sub>P@CB[10] was mixed with six equivalents of imidazole (Fig. S11~S13). The same molar ratio was traced for mixture of MndMIm<sub>4</sub>P and imidazole (MndMIm<sub>4</sub>P + Im).



**Fig. S17** (a):Time course of oxygen production from 1 mM  $H_2O_2$  (final concentration) catalyzed by MndMIm<sub>4</sub>P@CB[10];Im (six equivalents of imidazole to MndMIm<sub>4</sub>P@CB[10]) in 100 mM phosphate buffer (pH 7.4) at 25°C. (b):Plot of observed rate constant ( $k_{obs}$ ) as a function of the concentration of MndMIm<sub>4</sub>P@CB[10];Im (per MndMIm<sub>4</sub>P@CB[10]).



**Fig. S18** (a) Time course of oxygen production from 1 mM  $H_2O_2$  (final concentration) catalyzed by MndMIm<sub>4</sub>P in 100 mM phosphate buffer (pH 7.4) at 25°C. (b) Plot of observed rate constant ( $k_{obs}$ ) as a function of the MndMIm<sub>4</sub>P concentration.



**Fig. S19** (a) Time course of oxygen production from 1 mM  $H_2O_2$  (final concentration) catalyzed by MndMIm<sub>4</sub>P@CB[10] in 100 mM phosphate buffer (pH 7.4) at 25°C. (b) Plot of observed rate constant ( $k_{obs}$ ) as a function of the MndMIm<sub>4</sub>P@CB[10] concentration.



**Fig. S20** (a) Time course of oxygen production from 1 mM  $H_2O_2$  (final concentration) catalyzed by MndMIm<sub>4</sub>P in the presence of six equivalents of imidazole (Im) in 100 mM phosphate buffer (pH 7.4) at 25°C. (b) Plot of observed rate constant ( $k_{obs}$ ) as a function of the MndMIm<sub>4</sub>P+ Im concentration (per MndMIm<sub>4</sub>P).



**Fig. S21** (a) Time course of O<sub>2</sub> production from 10 mM H<sub>2</sub>O<sub>2</sub> (final concentration) catalyzed by MndMIm<sub>4</sub>P@CB[10];Im (six equivalents of imidazole to MndMIm<sub>4</sub>P@CB[10]) in 50 mM phosphate buffer (pH 7.4) at 25°C. Yellow: 5.0  $\mu$ M. Red: 7.5  $\mu$ M. Green: 10  $\mu$ M. (b) Plot of observed rate constant (k<sub>obs</sub>) as a function of MndMIm<sub>4</sub>P@CB[10];Im concentration (per MndMIm<sub>4</sub>P).



**Fig. S22** Lineweaver-Burk plot for (a) MndMIm<sub>4</sub>P alone, (b) MndMIm<sub>4</sub>P@CB[10], (c) MndMIm<sub>4</sub>P + Im and (d) MndMIm<sub>4</sub>P@CB[10];Im. Turnover number ( $k_{cat}$ ) and Michaelis constant ( $K_M$ ) were determined by intercepts of the Lineweaver-Burk plot (1/Vo<sub>2</sub> axis for  $k_{cat}$  and 1/[H<sub>2</sub>O<sub>2</sub>] axis for  $K_M$ , respectively). The  $k_{cat}$  and  $K_M$  values were determined as averages for independent three runs.



**Fig. S23** Time course of absorbance at 660 nm (oxidized ABTS) in the presence of 0.2 mM  $H_2O_2$  (final concentration), 0.5 mM ABTS (final concentration) and 15  $\mu$ M (final concentration) test samples in 50 mM phosphate buffer (pH 7.4) at 25°C.



**Fig. S24** Effect of 10  $\mu$ M (final concentration) MndMIm<sub>4</sub>P or MndMIm<sub>4</sub>P@CB[10];Im (per MndMIm<sub>4</sub>P@CB[10]) on viability of HeLa cells. The cell viability was measured by Alamar blue assay. N.T: Non-treatment. No significant difference was observed in the cell viability among the three lanes.

|                                           | Catalase activity<br>(µM O <sub>2</sub> /min) | Peroxidase activity<br>(µM ABTS/min) | Reference |
|-------------------------------------------|-----------------------------------------------|--------------------------------------|-----------|
| Mn-Salen derivative with distal imidazole | 83 <sup><i>a</i></sup>                        | 6.5 <sup>C</sup>                     | 1         |
| Mn-Salen derivative with distal pyridine  | 281 <sup><i>a</i></sup>                       | 17.9 <sup>C</sup>                    | 1         |
| EUK-114                                   | $70 \pm 8^b$                                  | $0.8 \pm 0.2^d$                      | 2         |
| EUK-134                                   | 243 ± 18 <sup>b</sup>                         | $37.8 \pm 9.6^d$                     | 2         |
| EUK-123                                   | $112 \pm 14^b$                                | $19.9\pm0.5^{d}$                     | 2         |

Table S2 Literature benchmarks for catalase activity and peroxidase activity of Mn-Salen derivatives.

<sup>a</sup>Catalase activity was measured in 50 mM phosphate buffer (pH 7.4) by Clark-type oxygen electrode.<sup>1</sup> Oxygen production from 10 mM H<sub>2</sub>O<sub>2</sub> (final concentration) catalyzed by 10  $\mu$ M Mn-Salen derivatives was monitored at 25±0.2°C.<sup>1</sup> <sup>b</sup>Catalase activity was measured in sodium phosphate buffer (pH 8.1) by Clark-type oxygen electrode.<sup>2</sup> Oxygen production from 10 mM H<sub>2</sub>O<sub>2</sub> (final concentration) catalyzed by 10  $\mu$ M Mn-Salen derivatives was monitored at 27±0.2°C.<sup>2</sup> <sup>c</sup>Peroxidase activity was measured in the mixture consisted of 50 mM sodium phosphate (pH 7.4), 0.5 mM ABTS, 0.2 mM H<sub>2</sub>O<sub>2</sub> and 10  $\mu$ M Mn-Salen derivatives at 25±0.2°C.<sup>1</sup> <sup>d</sup>Peroxidase activity was measured in the mixture consisted of 50 mM sodium phosphate (pH 8.1), 0.9% sodium chloride, 0.5 mM ABTS, 0.2 mM H<sub>2</sub>O<sub>2</sub> and 10  $\mu$ M Mn-Salen derivatives (EUK-114, EUK-134, EUK-123) at 27±0.2°C.<sup>2</sup>

|                                         | $\begin{array}{l} \text{SOD activity } (k_{\text{SOD}}) \\ (\times10^7M^{\text{-1}}\text{s}^{\text{-1}})^a \end{array}$ | ONOO <sup>-</sup> -reducing<br>activity (k <sub>red</sub> )<br>(×10 <sup>6</sup> M <sup>-1</sup> s <sup>-1</sup> ) <sup>b</sup> | Reference |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| Mn-SOD (human)                          | ~ 200                                                                                                                   | _                                                                                                                               | 3         |
| Peroxiredoxin<br>Glutathione peroxidase | -                                                                                                                       | 8~70                                                                                                                            | 4         |
| MndMIm <sub>4</sub> P                   | 4.3 ± 0.3                                                                                                               | 4.2 ± 0.4                                                                                                                       | this work |
| MndMIm <sub>4</sub> P@CB[10]            | 5.3 ± 0.7                                                                                                               | $5.5\pm0.5$                                                                                                                     | this work |
| MndMIm <sub>4</sub> P + Im              | 3.6 ± 1.1                                                                                                               | $5.2\pm0.2$                                                                                                                     | this work |
| MndMIm <sub>4</sub> P@CB[10];Im         | $5.0\pm0.5$                                                                                                             | $7.6\pm0.8$                                                                                                                     | this work |
| MnM4Py <sub>4</sub> P                   | 2.1 ± 0.1                                                                                                               | $2.0\pm0.2$                                                                                                                     | this work |

## Table S3 SOD activity ( $k_{SOD}$ ) and ONOO<sup>-</sup>-reducing activity ( $k_{red}$ ).

<sup>*a*</sup>SOD activity was determined by Stopped-flow method according to the previous procedure.<sup>5-7</sup> Briefly, time decay of superoxide at 245 nm was spectrophotometrically monitored in HEPES buffer (pH 8.1) at 21°C.<sup>7</sup> For each concentration of sample, observed rate constant ( $k_{obs}$ ) was calculated.  $k_{SOD}$  was determined from the slope of the plot of  $k_{obs}$  as a function of the sample concentration. SOD activity of Mn(III)-5,10,15,20-tetrakis(*N*-methylpyridinium-4-yl)porphyrin (MnM4Py<sub>4</sub>P) (control experiment) is consistent with that of the previous report.<sup>7</sup> <sup>*b*</sup>ONOO<sup>-</sup>-reducing activity was determined by the similar procedure to that for SOD activity.<sup>5-8</sup> Time decay of ONOO<sup>-</sup> at 302 nm was spectrophotometrically monitored in the presence of 2 mM ascorbic acid (Asc) in 50 mM phosphate buffer (pH 7.4) at 25°C. The subsequent protocol is same as that for SOD activity. The catalytic rate constant ( $k_{red}$ ) of ca. ~10<sup>6</sup> M<sup>-1</sup>s<sup>-1</sup> for MnM4Py<sub>4</sub>P was obtained as previously reported.<sup>5,8</sup> <sup>*a*-b</sup>For stoichiometric formation of MndMIm<sub>4</sub>P@CB[10];Im, MndMIm<sub>4</sub>P@CB[10] was mixed with six equivalents of imidazole to MndMIm<sub>4</sub>P@CB[10] (Fig. S11~S13). The same molar ratio was traced for mixture of MndMIm<sub>4</sub>P and imidazole (MndMIm<sub>4</sub>P + Im).

## References

- Y. Noritake, N. Umezawa, N. Kato, T. Higuchi, *Inorg. Chem.*, 2013, **52**, 3653– 3662.
- S. R. Doctrow, K. Huffman, C. B. Marcus, G. Tocco, E. Malfroy, C. A. Adinolfi, H. Kruk, K. Baker, N. Lazarowych, J. Mascarenhas, B. Malfroy, *J. Med. Chem.*, 2002, 45, 4549-4558.
- A. Squarcina, A. Soraru, F. Rigodanza, M. Carraro, G. Brancatelli, T. Carofiglio, S. Geremia, V. Larosa, T. Morosinotto, M. Bonchio, *ACS Catal.*, 2017, 7, 1971–1976.
- 4. A. Haber, Z. Gross, Chem. Commun., 2015, 51, 5812-5827.
- 5. S. Asayama, T. Nakajima, H. Kawakami, *Metallomics*, 2011, 3, 744-748.
- R. Kubota, S. Imamura, T. Shimizu, S. Asayama, H. Kawakami, ACS Med. Chem. Lett., 2014, 5, 639-643.
- F. C. Friedel, D. Lieb, I. Ivanovic-Burmazovic, J. Inorg. Biochem., 2012, 109, 26 32.
- 8. J. Lee, J. A. Hunt, J. T. Groves, J. Am. Chem. Soc., 1998, 120, 6053-6061.