Electronic supplementary Information

Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and its application for colorimetric detection of H_2O_2 and glutathione in human blood serum

Vikas Kumar Singh^a, Pradeep Kumar Yadav^a, Subhash Chandra^a, Daraksha Bano^a, Mahe Talat^b and Syed Hadi Hasan^{*a}

^aNano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology

(BHU), Varanasi -221005, U.P., India.

^bDepartment of Physics, Institute of Science, Banaras Hindu University, Varanasi-221005, U.P., India

Contents

Pages

1.	(S1) UV-visible absorption spectra of as synthesized NS-CQDs	S 3
2.	(S2) Effect of pH on the emission spectra of NS-CQDS with corresponding photograph under UV – light (λ_{ex} = 365 nm) in the pH range 2 to 12	. S3
3.	(S3) Fluorescence spectra of NS-CQDS in different medium (DMEM, FBS, PBS) and its photograph under normal light and UV- light @365 nm	.S4
4.	(S4) Effect of ionic strength on emission intensity of NS-CQDS with photograph unde UV- light (λ_{ex} = 365 nm).	r S5
5.	(S5) Photostability of as synthesized NS-CQDS after irradiation of UV- light for 80 h	S5
6.	(S6) Zeta potential profile of as synthesized NS-CQDs	. S 6

7.	(Table S1) Detail about fluorescence quantum yield measurement	S6
8.	Beer- lambert Law	.S7
9.	(S7) Optimized parameter for the oxidation of TMB	.S7
10	(S8) photograph of GSH detection by ox-TMB under normal ligght and UV- light (λ_{ex} =	
	365 nm) S	8
11	(S9) Fluorescence spectra of ox-TMB and ox-TMB + GSH	8
12	(S10) Absorption spectrum of Ox-TMB and emission spectrum of NS-CQDs. Inset show the photograph of NS-CQDs under UV-light and ox-TMB under normal light	's 9

13. (S11) Selectivity test for GSH detection by ox-TMB solution	13.
---	-----

Figure S1. UV-visible absorption spectra of as synthesized NS-CQDs

Figure S2. Effect of pH on the emission intensity of NS-CQDS with corresponding photograph under UV – light (λ_{ex} = 365 nm) in the pH range 2 to 12.

Figure S3. Fluorescence spectra of NS-CQDS in different medium (DMEM, FBS, PBS) and its photograph under normal light and UV- light @365 nm showing high stability and well dispersity.

Figure S4. Effect of ionic strength in term of NaCl concentration on emission intensity of NS-CQDS with corresponding photograph under UV-light (λ_{ex} = 365 nm)

Figure S5. Photostability of as synthesized NS-CQDS after irradiation of UV- light for 80 h

Figure S6. Zeta potential profile of as synthesized NS-CQDs

Table S1. Fluorescence quantum yield measurement with Integrated intensity and absorbance of quinine sulphate and NS-CQDs at excitation wavelength 360 nm.

Sample	Integrated intensity	Absorbance at 360	Quantum Yield (%)
	at 360 nm	nm	
Quinine Sulphate	56191.340	0.047	54
(Reference)			
NS-CQDs	45210.201	0.044	46

Fluorescence Quantum yield was determined by using equation 1

$$QY = QY_{ref} \frac{\eta^2}{\eta_{ref}^2} \frac{I}{A} \frac{A_{ref}}{I_{ref}}$$
 1

Where QY_{ref} is the quantum yield of the reference compound; η is the refractive index $\left(\frac{\eta^2}{\eta_{ref}^2} = 1\right)$ of the solvent; I is the integrated fluorescence intensity; and A is the absorbance. To minimize reabsorption effects, absorbance in the 1 cm fluorescence cuvette were kept under 0.1.

Beer–Lambert Law

The initial reaction rate was calculated using equation 2

$$C = A/\varepsilon b$$
 2

where, c is the substrate concentration, A is the absorbance, b is the thickness of the solution.

Figure S7. Optimized parameter for the oxidation of TMB at different (a) pH (b) Temperature (c) Concentration of H_2O_2 (d) Concentration of TMB and (e) Time respectively.

Figure S8. Photograph showed naked eye colour changed (panel A) and under UV- light @ 365n (panel B) after addition of different concentration of GSH in the ox-TMB solution.

Figure S9. Fluorescence spectra of ox-TMB (black line) and ox-TMB + GSH (red line) at excitation wavelength 360 nm with turn on signal (inset photograph) showing turn on sensing of GSH.

Figure S10. Absorption spectrum of Ox-TMB and emission spectrum of NS-CQDs. Inset shows the photograph of NS-CQDs under UV-light and ox-TMB under normal light.

Figure S11. Bar diagram represent relative absorption of ox- TMB after addition of 50 μ L (C, 10⁻⁴ M) of GSH and 100 μ L (C, 10⁻³ M) of amino acid and glucose in ox- TMB solution at ambient condition indicating negligible interference and photograph showed corresponding colour change.