Supporting Information

Non-peptidic guanidinium-functionalized silica nanoparticles as selective mitochondria-targeting drug nanocarriers

Junho Ahn,^{a,†} Boeun Lee,^{b,†} Yeonweon Choi,^{a,†} Hanyong Jin,^b Na Young Lim,^a Jaehyeon Park,^a Ju Hyun Kim,^a Jeehyeon Bae,^{*,b} and Jong Hwa Jung^{*,a}

^aDepartment of Chemistry and Research Institute of Natural Sciences Gyeongsang National University, Jinju, 52828, Korea.

^bSchool of Pharmacy, Chung-Ang University, Seoul 06974, Korea.

† These authors contributed equally.

*Corresponding Author : jonghwa@gnu.ac.kr

Scheme S1. Synthetic routes of DOX/GA-Fe₃O₄@MSNs and DOX/TPP-Fe₃O₄@MSNs.

Figure S1. IR spectra of Fe₃O₄@MSNs, GA-Fe₃O₄@MSNs, and DOX/GA-Fe₃O₄@MSNs.

Figure S2. TEM-EDS of GA-Fe₃O₄@MSNs. (Cu-supported carbon/formvar grid was used for GA-Fe₃O₄@MSNs sampling)

Figure S3. Zeta potentials of Fe₃O₄@MSNs, NH₂-Fe₃O₄@MSNs, TPP-Fe₃O₄@MSNs and GA-Fe₃O₄@MSNs at 25 °C in HEPES buffer (0.01 M, pH 7.4).

Figure S4. Theromogravimetric analyses of Fe₃O₄@MSNs, GA-Fe₃O₄@MSNs and DOX/GA-Fe₃O₄@MSNs (N₂ flow: 20 mg/min, heating rate: 5°C/min).

Figure S5. Fluorescence spectra of DOX (2.7 μ M) and DOX/GA-Fe₃O₄@MSNs (0.33 mg/ml). (Excitation wavelength: 490 nm)

Figure S6. Time dependent release monitoring of DOX leaked out from DOX/GA-Fe₃O₄@MSNs in HEPES buffer (0.01 M, pH 7.4) at 37 $^{\circ}$ C, inset: calibration curve of free DOX.

Types of Carrier	Targeting-Probe	Name of carriers	Accumulation time	Reference
Polymer-based carrier	N-(2-hydroxypropyl) methacrylamide-guanidine copolymer	P-GPMA-KLA	4 hours	ACS Appl. Mater. Interfaces 2017, 9 , 27563–27574.
	Poly(lactic-co-glycolic acid)- TPP	GGA loaded PLGA NPs	1 hour	Biomater. Sci. 2017, 5 , 1800- 1809.
	Methoxy polyethylene glycol (mPEG)-TPP conjugate	mPEG–(ss- TPP) ₂ /DOX NPs	4 hours	<i>Biomacromolecules</i> , 2017, 18 , 1074–1085.
	TPP-amphiphilic polymer (C ₁₈ -PEG ₂₀₀₀ -TPP)	PTX- PLGA/CPT/DSSP	24 hours	Nanoscale, 2017, 9 , 17044- 17053
	Thioketal linker- camptothecin-PEG _{1K} -TPP block copolymer	ZnPc/CPT-TPP NPs	6 hours	<i>Theranostics</i> , 2016, 6 , 2352-2366
Hydroxyapatite- based carrier	Without targeting probe	HAPNs	24 hours	ACS Appl. Mater. Interfaces, 2016, 8 , 25680–25690.
Ceria-based carrier	Atto 647N	Pt-Ceria-8-atto NPs	10 minutes	Nanoscale, 2016, 8 , 13352– 13367.
Graphene-based carrier	Integrin αvβ3 monoclonal antibody	PPa-NGOmAb	4 hours	Nanoscale, 2016, 8 , 3530– 3538.
Silica-based carrier	Without targeting probe	R-P@MSN-DTX	4 hours	Nanoscale, 2017, 9, 314-325.
	Without targeting probe	ACML	1 hour	<i>Acta Biomaterialia</i> , 2016, 39 , 94–105.
	DNA-binding Ru ²⁺ -complex	UCSRF	12 hours	<i>Biomaterials</i> , 2017, 141 , 86- 95.
	Mitochondrial locating signals (MLS)-peptides	2-ME/mtMSN	12 hours	Nano Research, 2014, 7 , 1103-1115.
	TPP	MSNPs-PPh ₃ - FITC	12 hours	ACS Appl. Mater. Interfaces, 2016, 8 , 34261–34269.
	TPP	MMCN	4 hours	Small, 2016, 12 , 4541-4552.
	TPP	J-MSN	2 hours	ACS Appl. Mater. Interfaces, 2017, 9 , 26697-26706.
	TPP	MSNP-PPh ₃ -DOX	4 hours	Nanoscale, 2015, 7 , 16677- 16686.
	A guanidinium derivative	DOX/GA- Fe ₃ O ₄ @MSN	5 minutes	This work

Table S1. Accumulation times for mitochondria-targeting probes from previously reported results.

TPP: triphenylphosphonium, PEG: polyethylene glycol

Figure S7. IR spectra and theromogravimetric analyses of Fe₃O₄@MSNs, TPP-Fe₃O₄@MSNs and DOX/TPP-Fe₃O₄@MSNs.

Figure S8. IR spectra and theromogravimetric analyses of DOX/NH₂-Fe₃O₄@MSNs and DOX/Fe₃O₄@MSNs.

Quantitative analysis of organic molecules in Fe₃O₄@MSNs by TGA

- Quantitative analysis of targeting ligand by TGA

- Quantitative analysis of doxorubicin by TGA

$$\left(\frac{[(\text{Weight loss of DOX/GA- Fe}_{3}O_{4}@MSN) - (\text{Weight loss of GA-Fe}_{3}O_{4}@MSN)]}{100}\right) \div \text{Molecular weight of DOX}$$

.