Standardized microgel beads as elastic cell mechanical probes

S. Girardo^{1,2}, N. Träber^{1,3}, K. Wagner¹, G. Cojoc¹, C. Herold¹, R. Goswami², R. Schlüßler¹, S. Abuhattum¹, A. Taubenberger¹, F. Reichel¹, D. Mokbel¹, M. Herbig¹, M. Schürmann¹, P. Müller¹, T. Heida³, A. Jacobi¹, E. Ulbricht¹, J. Thiele^{3,4}, C. Werner^{2,3}, and J. Guck¹

¹Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany

²Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany

³Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany

⁴Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstr. 10, 01069 Dresden, Germany

SUPPLEMENTARY MATERIAL

Figure S1

Ammonium Krytox® surfactant, emulsion stability and surfactant analysis (A) Longterm emulsion stability test. A water-in-fluorinated oil emulsion – stabilized by the ammonium Krytox[®] surfactant in HFE 7500 – is stored for several days, and its stability confirmed by droplet size distribution analysis (scale bar, 50 μm). (B) FTIR spectrum of the ammonium-Krytox[®] surfactant and Krytox[®] 157 FSH as key starting material showing the conversion of Krytox[®] 157 FSH-carboxylic acid groups (1175 cm⁻¹) to ammonium-Krytox[®] carboxylate (1670 cm⁻¹).(C) Determination of the critical micellar concentration for ammonium-Krytox[®] by pendant droplets analysis. HFE 7500/surfactant solution is extruded from a syringe into a cuvette of double-distilled water.

Figure S2

Repeatability of bead swelling behaviour (A) Distribution of droplet diameter for different monomer concentrations (C_T) measured with bright-field microscopy. Inset: distribution of droplet diameter analyzed after production and after polymerization for a fixed total monomer concentration ($C_T = 7.9\%$). (B) Distribution of droplet diameter for

three different batches with three different monomer concentration, $C_T = 7.9\%$ (red box), $C_T = 9.9\%$ (blue box), $C_T = 11.8\%$ (green box).

Table S1

Diameter mean value for droplets $(\overline{D_{oul}})$ and beads $(\overline{D_{bead}})$, standard deviation *S.D.*, coefficient of variation *C.V.*, for droplets and beads with different monomer concentration (C_T) , and the quantification of the bead swelling behavior through the calculation of the normalized volume of equilibrium of the swollen gel V_{eq} and its standard error $(\Delta (V_{eq}))$. *n* is the number of measured beads.

Figure S3

Repeatability of production process and AFM elasticity measurement (A) Young's moduli measured by AFM on three groups of five batches. Each group has a different monomer concentration, $C_T = 7.9\%$ (red box), $C_T = 9.9\%$ (blue box), $C_T = 11.8\%$ (green box).

Table S2

Young's Modulus mean value E_{mean} , standard deviation *S.D.*, and coefficient of variation *C.V.*, measured by AFM on three groups of five batches. Each group has a different monomer concentration: $C_T = 7.9\%$, $C_T = 9.9\%$, $C_T = 11.8\%$. *n* is the number of measured beads.

Figure S4

Bead shape evolution in RT-DC microchannel Bead deformation ($C_T = 7.9\%$) inside the channel depicted over time and the best exponential decay fitting curve (solid line) with $\tau_v = (0.12 \pm 0.02)$ ms. The inset shows the shape evolution of a bead in the narrow channel (blue mask was applied for better visualization). It was obtained by the superposition of 7 different consecutive frames extrapolated from a video acquired at a frame rate of 2000 fps. Channel length: 300 µm, scale bar: 20 µm.

Figure S5

Flow rate optimization for RT-DC measurement, based on bead composition and effective buffer viscosity. The deformation range (0.005 - 0.05) valid for the data analysis is showed with dashed lines. (A) Histogram of PAAm beads ($C_T = 7.9\%$) for three different flow rates and relative deformations: 0.008 µl/s (black bars) with low deformations, 0.024 µl/s (red bars) as suitable settings and 0.12 µl/s (green bars) with high deformations. (B) Histogram of PAAm beads ($C_T = 7.9\%$) using three different measurement buffers: MC-B at 0.018 µl/s (red bars) and 68% accordance with the recommended range, MC-A at

0.024 µl/s (blue bars) and 70% accordance with the recommended range and PBS at 0.18 µl/s (black bars) and 72% accordance with the recommended range. (C) Histogram of PAAm beads for three different polymer concentrations: $C_T = 7.4\%$, flow rate 0.012 µl/s (black bars); $C_T = 7.9\%$, flow rate 0.024 µl/s (red bars); $C_T = 8.9\%$, flow rate 0.04 µl/s (green bars), respectively with 83%, 96% and 96% accordance with the recommended range.

Figure S6

Comparison between AFM and RT-DC measurements. Young's modulus obtained with AFM indentation (black boxes) and RT-DC (red boxes) for five different batches produced by using the same monomer concentration ($C_T = 7.9\%$).

Table S3

Young's Modulus mean value E_{mean} , standard deviation *S.D.*, and coefficient of variation *C.V.*, measured by AFM and RT-DC on five batches produced with the same monomer concentration ($C_T = 7.9\%$). *n* is the number of measured beads.

Figure S7

Consistency of RT-DC measurements Young's modulus measured by RT-DC six times, during two different days, on the same batch, having a total monomer concentration $C_T = 7.9\%$.

Table S4

Young's Modulus mean value E_{mean} , standard deviation *S.D.*, and coefficient of variation *C.V.*, measured by RT-DC on the same batch, $C_T = 7.9\%$, six times during two different days. *n* is the number of measured beads.

Table S5

Young's Modulus mean value E_{mean} , standard deviation *S.D.*, and coefficient of variation *C.V.*, measured by AFM on unsorted and sorted microgel beads and by RT-DC on unsorted beads. *n* is the number of measured beads.

Video S1

Pre-gel droplet production (P_{oil} =850 mbar, P_{PAAm} =700 mbar). The video was recorded at 3000 fps and showed at 30 fps.

Figure S1

Figure S2

Size analysis											
Droplets					Beads					Swelling	
С _т (%)	n	<i>D_{oιl}</i> (μm)	<i>S.D.</i> (μm)	C.V. (%)	Batch	n	D _{bead} (μm)	<i>S.D.</i> (μm)	C.V. (%)	V _{eq}	Δ (V _{eq})
5.9	2789	12	1	8.3		696	18	1	5.5	3.4	0.6
7.4	3618	11.6	0.9	7.7		2596	15.7	0.8	5.1	2.5	0.5
					1	1917	15.3	0.8	5.2	2.2	0.5
7.9	2266	11.8	0.8	6.8	2	1930	15.1	0.8	5.3	2.1	0.4
					3	521	15.2	0.5	3.3	1.8	0.4
8.9	2822	12.4	0.7	5.6		1790	15.0	0.6	4	1.7	0.4
9.3	3228	12.2	0.9	7.4		3469	14.6	0.4	2.7	1.7	0.4
					1	1914	14.3	0.6	4.2	1.5	0.4
9.9	2716	12.5	0.9	7.2	2	865	14.1	0.6	4.2	1.4	0.4
					3	992	13.9	0.5	3.6	1.4	0.4
11					1	2759	12.9	0.5	3.9	1.1	0.4
11. o	2194	12.6	0.9	7.1	2	992	12.8	0.5	3.9	1.0	0.3
0					3	811	12.6	0.5	4	1	0.3

Figure S3

Repeatability of AFM elasticity measurement								
C ₇ (%)	Batch	n	E _{mean} (kPa)	<i>S.D.</i> (kPa)	C.V. (%)			
	1	73	1.4	0.5	39			
	2	48	1.2	0.6	51			
7.9	3	50	1.4	0.6	45			
	4	31	1.8	0.5	25			
	5	40	1.7	0.4	23			
	1	50	4.6	0.9	20			
	2	48	4.4	1.3	30			
9.9	3	42	4.1	1.4	34			
	4	45	3.8	1.3	34			
	5	48	4.3	1.5	35			
	1	32	10.6	2.6	25			
	2	49	12.2	2.0	16			
11.8	3	38	10.9	1.9	18			
	4	38	11.0	2.0	18			
	5	48	9.6	3.3	34			

Table S2

Figure S4

Different batches 7.9% C ₇									
AFM						RT-DC			
Batch <i>n E_{mean}</i> (kPa) <i>S.D.</i> (kPa) <i>C.V.</i> (%) <i>n</i>					n	<i>E_{mean}</i> (kPa)	<i>S.D.</i> (kPa)	C.V. (%)	
1	73	1.4	0.5	39	1607	1.2	0.2	15	
2	48	1.2	0.6	51	1600	1.4	0.3	21	
3	50	1.4	0.6	45	1970	1.5	0.2	15	
4	31	1.8	0.5	25	6534	1.6	0.2	11	
5	40	1.7	0.4	23	2020	1.4	0.3	18	

Figure S7

Same batch 7.9% C_{τ} (RT-DC)									
Measurement n E _{mean} (kPa) S.D. (kPa) C.V.									
1	3273	1.5	0.3	19					
2	3221	1.3	0.2	20					
3	2234	1.5	0.3	21					
4	2020	1.4	0.3	18					
5	1903	1.3	0.2	18					
6	2994	1.4	0.3	22					

|--|

Sorted beads									
Technique	Sample	n	<i>E_{mean}</i> (kPa)	<i>S.D.</i> (kPa)	C.V. (%)				
AFM	Unsorted	50	1.2	0.5	41				
	FSC low	22	0.5	0.2	37				
	FSC mid	26	0.9	0.2	23				
	FSC high	26	1.3	0.3	26				
RT-DC	Unsorted	1402	1.1	0.2	19				