Supporting Information

Durable, Flexible, Superhydrophobic and Blood-Repelling Surface for Use in Medical Blood Pumps

Zhe Li¹, Ba Loc Nguyen¹, Yi Chih Cheng¹, Junmin Xue², Graeme MacLaren^{3,4}, Choon Hwai Yap^{1*}

¹Department of Biomedical Engineering, National University of Singapore, Singapore.

Email: bieyapc@nus.edu.sg

²Department of Material Science and Engineering, National University of Singapore,

Singapore

³Department of Surgery, Yong Loo Lin School of Medicine, National University of

Singapore, Singapore

⁴Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre,

Singapore

PDMS sample: PDMS in this study refers to Sylgard 184 mixed with the curing agent at a weight ratio of 10:1. The mixed PDMS was degassed in the vacuum chamber. Thin PDMS membrane was prepared on a glass substrate and cured at 100°C for 2 hours.

Dip-coated sample: 0.6 g hydrophobic SiO₂ nano particles and 1.0 g PDMS were mixed in 10 ml acetone following similar protocols in the literature.^{1, 2} A uniform suspension was acquired by placing the mixture under ultrasonication for 20 minutes and magnetic stirring for 5 minutes. Thin slices of PDMS membrane were dipped into the suspension, and withdrawn slowly and vertically. Dip-coated samples were baked at 100 °C for 30 hours to cure the PDMS & SiO₂ layer.

Spray-coated sample: Spray-coating samples were prepared using the same suspension solution as the dip coating. The suspension was sprayed onto the PDMS membrane using a spray gun (nozzle diameter: 0.5 mm; distance between the gun and PDMS membrane: 15 cm; air pressure: 0.4 MPa).³ Spray-coated samples were cured at 100 °C for 30 hours before testing.

Press-in-mold sample: Following the reported method in the literature,^{4, 5} a control item was prepared using the press-in-mold method. Briefly, 0.6 g HP-SiO₂ particles were added to 1.0 g PDMS liquid; the sticky and pastry mixture was manually stirred to mix SiO₂ and PDMS. The mixture was fed into a mold cavity and cured at 100 °C under a clamping pressure of 10 MPa.

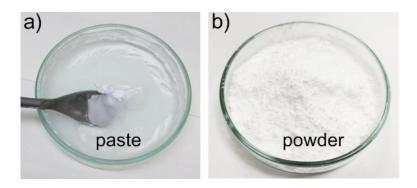
Sand-casting SHP sample with F-PDMS: Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FDTS) was firstly mixed with PDMS at a mass ratio of 4% as the fluorinated-PDMS (F-PDMS).⁶ After degasing, the mixture was pour onto the prepared SiO₂ mold, and cured at

100°C for 30 minutes; after curing, PDMS was peeled from the mold to obtain a casted F-PDMS SHP sample.

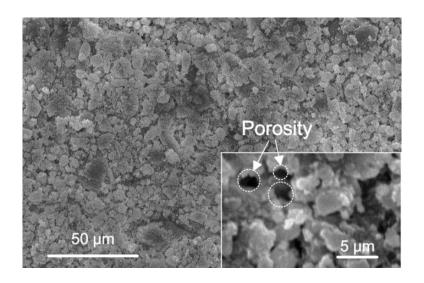
Porosity: Porosity of the SiO_2 mold prepared in this study was measured to be 49.69 % $\pm 1.47\%$ (averaged over five measurements). Porosity can be estimated using the following equation.⁷

$$Porosity(\%) = \frac{V_{mold} - (V_{PDMS} + V_{SiO2})}{V_{mold}} \times 100$$
 (1)

where, V_{mold} is the measured volume of a prepared SiO₂ & PDMS composite mold sample, V_{PDMS} is the volume of the PDMS, and V_{SiO2} is the volume of SiO₂.


 $V_{\rm PDMS}$ and $V_{\rm SiO2}$ are calculated using the following equations.

$$V_{PDMS} = \frac{m_{mold}}{(1+\delta) \cdot \rho_{PDMS}} \tag{2}$$


$$V_{SiO2} = \frac{\delta \cdot m_{mold}}{(1+\delta) \cdot \rho_{SiO2}}$$
 (3)

where, m_{mold} is the measured mass of a SiO₂ & PDMS composite mold, ρ_{PDMS} is the PDMS density (0.965 g/cm³), ρ_{SiO2} is the SiO₂ density (2.65 g/cm³), δ is the mass ratio (0.6 in this study) between SiO₂ and PDMS when preparing the SiO₂ mold.

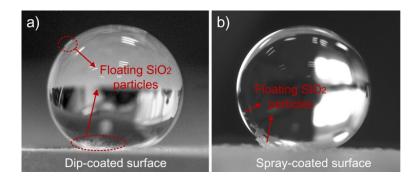

Blood anticoagulant: As for the anticoagulant, it was prepared by mixing 1.975g sodium citrate tribasic dehydrate (Sigma Aldrich C8532) and 1g HEPES (Sigma Aldrich H3375) in 50ml deionised water.⁸ The anticoagulant was mixed with the blood at a volume ratio of 1:10 to prevent blood from clogging. Blood test was performed in four hours after blood collection.

Figure S1. a) The HP-SiO₂ & PDMS composite paste before drying, and b) the HP-SiO₂ & PDMS composite powder after drying.

Figure S2. SEM image of the prepared SiO_2 mold, showing micro-particles and micro-porosities on the prepared SiO_2 mold.

Figure S3. Free SiO₂ particles floating around a droplet a) on the dip-coated surface, and b) the spray-coated surface.

References

- 1. K. Li, X. Zeng, H. Li, X. Lai, C. Ye and H. Xie, *Applied Surface Science*, 2013, **279**, 458-463.
- 2. D. Zhi, Y. Lu, S. Sathasivam, I. P. Parkin and X. Zhang, *Journal of Materials Chemistry A*, 2017, **5**, 10622-10631.
- 3. X. Zhang, Y. Guo, P. Zhang, Z. Wu and Z. Zhang, *ACS applied materials & interfaces*, 2012, **4**, 1742-1746.
- 4. X. Zhang, W. Zhu, G. He, P. Zhang, Z. Zhang and I. P. Parkin, *Journal of Materials Chemistry A*, 2016, 4, 14180-14186.
- 5. X. Zhang, D. Zhi, L. Sun, Y. Zhao, M. K. Tiwari, C. J. Carmalt, I. P. Parkin and Y. Lu, *Journal of Materials Chemistry A*, 2018, DOI: 10.1039/C7TA08895G.
- 6. Z. Pan, H. Shahsavan, W. Zhang, F. K. Yang and B. Zhao, *Applied Surface Science*, 2015, **324**, 612-620.
- 7. F. Chen, Y. Lu, X. Liu, J. Song, G. He, M. K. Tiwari, C. J. Carmalt and I. P. Parkin, *Advanced Functional Materials*, 2017, **27**, 1702926.
- 8. C. Q. Lai, J. C. W. Shen, W. C. W. Cheng and C. H. Yap, *RSC Advances*, 2016, **6**, 62451-62459.