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Fig. S1. (a) The perspective view of the spinneret in the sheath-gas assisted 

electrospinning device. (b, c) The front and side photographs of the spinneret. The 

injection needle passed through the air channel and sealed the end with a sealing 

device. (d) The photograph of the spinneret connected to the positive electrode of 

high-voltage power.

Assistant gas from a air channel is supplied into the spinneret through the sheath-gas 

input ducts to ensure the well-distributed of gas in the nozzle. The air will be guided 

into the nozzle and acted as sheath-gas to stretch the electrospinning charged nano-

jet flow.



Fig. S2. Schematic diagrams of the transition from liquid solution in nanojets to solid 

nanofibers.

The sheath-gas can strengthen the convection and exchange between the gaseous 

solvents DMF, so that the solvents outside the nanofibers are continuously taken 

away, thereby ensuring that the evaporation surface and the outside always 

maintain a certain pressure difference, increasing the evaporation rate. Within a 

certain range, the faster the sheath-gas flow, the more favorable the convection and 

exchange of the solvent in the air, thereby increasing the pressure difference at the 

gas-solid interface. However, when the sheath-gas velocity reaches a certain level, 

the evaporation at the interface tends to be stable, and the effect is relatively small 

at this time. This theory also provides the basis for the choice of sheath-gas pressure. 

More importantly, due to the presence of abundant hydrogen bonds between -NH2 

of DMF as electrospun solvent and -CF2 dipoles in the PVDF solution, the rapid 

evaporation of the solvent would lead to a strong tensile action in the nano-jets, 

which promotes the formation of a large amount of the β-phase in the PVDF/gas 

nanofibers that are in turn used as working dipole of piezoelectricity.



Fig. S3. (a) SEM images of the PVDF (left) and PVDF/gas (right) nanofibers and 

(b)their diameter distribution.

Fig. S3 showed that the sheath-gas can improve the morphology of the electrospun 

nanofibers. The PVDF nanofibers from the 15 wt% electrospinning solution displayed 

a wide variety of fiber diameters and some beads due to the lower tensile viscosity 

(the left of Fig. S3a). However, after treating with sheath-gas, the PVDF/gas 

nanofibers from the same 15 wt% electrospinning solution displayed a narrow and 

uniform diameter distribution (the right of Fig. S3a), with the average diameter of 

0.5µm (Fig. S3b). These phenomena proved again that the sheath-gas provided an 



excessive tensile force to stretch the nanofibers and a fast solvent volatilization to 

improve the phase transition from the α phase to β and γ phase.

Fig. S4. (a) The surface force schematic of the Taylor cone: the conventional 

electrospinning process and sheath-gas electrospinning process. (b) The volume 

force schematic of the Taylor cone: the conventional electrospinning and sheath-gas 



electrospinning process. (c) Schematic diagram of charged jet motion: the 

conventional electrospinning process and sheath-gas electrospinning process.

The surface normal force and tangential force of Taylor cone can be expressed by 

equations (1-4) as follows:
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where Pn and Pt are the surface normal force and tangential force of Taylor cone 

caused by electric and gravitational fields, respectively. Pn1 and Pt1 are the surface 

normal force and tangential force of Taylor cone caused by sheath-gas, electric and 

gravitational fields, respectively. Pe,n, Pe,t , Pη,n and Pη,t represent normal electric field 

force, tangential electric field force, normal sticky stress and tangential sticky stress 

of Taylor cone. P’n and p’t are additional normal force and tangential force of Taylor 

conecaused by sheath-gas. Ph and Ps are static pressure of fluid and the pressure 

difference caused by the surface tension. Obviously, the sheath-gas provides 

additional force to increase both the surface normal and the tangential force (Fig. S 

4a), effectively.

When the Taylor cone is spinning, the volume force of the Taylor cone could be 

expressed by the following equations (5,6):
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where Fv is the volume force of the Taylor cone generated by electric and 



gravitational fields. Fv1 is the volume force of the Taylor cone caused by sheath-gas, 

electric and gravitational fields. Fg , Fe, Fρ, Fη, Fa and Fc represent gravity, electric field 

force, inertial force, viscous force, air resistance and capillary force, respectively. FG is 

the extra volume force caused by sheath-gas. It is not difficult to find that the 

presence of sheath-gas increases the volume force of the Taylor cone (Fig. S 4b).

The auxiliary action of the sheath-gas can simultaneously increase the surface force 

and the volume force of the Taylor cone, which can increase the moving speed of the 

nanofibers to reduce the whipping stroke and can also limit the range of whipping 

(Fig. S 4c) that can enhance the rigidity of the nanofibers and further stabilize the 

piezoelectric phase (β/γ phase).

Fig. S5. (a) The SEM image showing the surface of the PVDF film. (b) The SEM image 

showing the rough morphology of the PVDF/GO nanofibers with 1.0 wt % GO 

lamellae (red arrow). The inset of (b) showing PVDF/GO nanofibers structure 

consisting of a PVDF core and GO shell (red arrows). 



Fig. S6. (a) HRTEM image of the pure PVDF nanofiber. The inset images are the FFT 

before and after the mask filtering and its corresponding scanning area was shown 

by a yellow dotted line (the inset). (b) DSC thermograms of the pure PVDF and 

PVDF/gas nanofibers.

Fig. S 6b showed the DSC scans of PVDF and PVDF/gas nanofibers. The melting 

endotherms of α- and β-PVDF were reported to be at the similar position. Comparing 

to the pure PVDF nanofibers, the DSC thermograms of the PVDF/gas nanofibers 

present a peak melting temperature shifting toward higher temperatures and 

narrowing of the melting point features. The thermograms demonstrated that the 

sheath-gas caused an increase in the total amount of β phase in the PVDF/gas 

nanofibers. In addition to the spikes responding to the β phase, a small peak at 169° 

assigned to the γ phase appeared in the PVDF/gas nanofibers. Sheath-gas 

accelerated the volatilization of the solvent and achieved the rapid stretching and 

transformation of liquid-solid phase during the electrospinning, which could 

effectively transform most of the α phase into the working dipole of β phase in the 

recrystallization of the PVDF/gas nanofibers during the electrospinning process.



Fig. S7. (a, b) The output voltage and current signals generated by nanogenerators 

based on PVDF/gas nanofibers with various air pressures. (c) FTIR spectra of pure 

PVDF and PVDF/gas nanofibers. (d) Variation of the fraction of the polar β phase 

content of PVDF/gas nanofibers with various pressures. (e) The linear relationship 

between the gas pressure and the flow rate of the sheath-gas.



The sheath-gas is determined to be 80 kPa, because that a small pressure cannot 

effectively stretch the molecular chain of the PVDF, while an excessively high air 

pressure will provide a surplus tensile force to destroy the original molecular chain, 

and then decrease the piezoelectric performance of the PVDF nanofibers (Fig. S 7a 

and b). From the perspective of the content of the polar phases, the intrinsic cause 

of the change in piezoelectric performance is qualitatively resolved. The FTIR spectra 

show characteristic vibration bands designated for the PVDF polar phase (β phase) at 

840 cm-1. In contrast, the intensity at 763cm-1 band is assigned to quantify the 

relative fraction of α crystal phase. Based on FTIR result, the relative polar phase 

content (F(β)) can be calculated using the equation (7) as follows:

                                           (7) )26.1/( )()()()(  AAAF 

where A(β) and A(α) are the intensity of the β-phase peak at 840cm-1 and the intensity of 

the α crystal phase peak at 763cm-1, respectively. The calculated polar phase content 

in the PVDF/gas nanofibers (80 kPa) is as high as 83%, while the content of 

piezoelectric phase in PVDF nanofibers is only 52%, which means that the content of 

piezoelectric phase is increased by about 60%. And the change trend of polar phase 

content is the same as that of piezoelectric output.

Ignoring the pipe roughness coefficient (i.e., the resistance), the flow rate of the 

sheath-gas can be calculated by equation (8):

                                                  (8))/'(*)/Q(V PPA

where V is the flow rate, Q represents the flow rate per unit time, and A is the cross-

sectional area of the sheath-gas outlet. P' is the air pressure at the inlet of the 

sheath-gas device, and P is the total air pressure. According to the fixed parameters 

of the air compressor, Q is known to be 0.11 m3/min, and P is 800 kPa. Meanwhile, 



the diameter of the sheath-gas device is known to be 0.2 mm. Finally, the sheath-gas 

flow rates are calculated according to the different P', as shown in Fig. S7e.

Fig. S8. (a) The experimental setup including a flexure stage controlled by a step-

motor controller to flex the sample. The extrusion displacement is 5000 pulses 

(0.5cm). (b) The output voltage generated by the positive extrusion and the enlarged 

view (right) of the output signal. (c) The output voltage generated by the reverse 

extrusion and the enlarged view (right) of the output signal. 



Once the flexible harvesting device is squeezed, piezopotential is generated inside 

the thin film by the tensile stress-induced deformation of the device, resulting in 

electrons flow in the external load to balance the electric field made by dipoles and 

accumulate at the top electrode. When the flexible harvesting device returns to the 

original flat state, the charges tend to move back to their original positions. 

Consequently, under periodic motions of bending and unbending, positive and 

negative electric signals are generated from the flexible device.



Fig. S9. (a) Schematic of the squeeze-release experiment; Output voltages of 

nanogenerators prepared by PVDF (b,d) and PVDF/gas nanofibers (c,e), respectively. 

The concentration of the electrospun solution is 15 wt%. The PVDF/gas nanofibers 

based nanogenerator exhibited an output voltage of 5.5 V (the peak-to-peak voltage), 

whereas 1.5 V was observed in the sample based on PVDF nanofibers. When the 

concentration of PVDF was 15wt%, some beads doped in the nanofibers prevented 

the transfer of charge to affect the piezoelectric properties (Fig. S 3a), resulting that 

87.5% duty ratio was achieved which indicated a low mechanical-electric conversion 

rate. Under the purging of the sheath-gas, not only can provide the internal/external 

stress to improve the ratio of piezoelectric phases, but also can reduce the existence 

of droplets. In short, the output voltage was significantly increased through the 

purge of sheath-gas, almost 3.5 times. Similarly, the same conclusion was reached 

for 12 wt% PVDF solution.

Fig. S10.  (a,b) The short circuit currents of the nanogenerators prepared with PVDF 

and PVDF/gas nanofibers, respectively, corresponding to the maximum bending 

state of the finger. 



The concentration of the electrospun solution was 15 wt%. The currents generated 

from the nanogenerators based on PVDF and PVDF/gas nanofibers were about 20 nA 

and 70 nA (the peak-to-peak current) under the corresponding the maximum 

bending of finger (~120°), respectively.

Fig. S11. (a) The output voltage and (b) the current of nanogenerators based on 

PVDF membrane. (c) The output voltage and (d) the current of nanogenerators 

based on PVDF/GO nanofibers. The above operating power was 0.8HZ. 



Fig. S12. Three-dimensional confocal scans of cells on  the tissue culture plate (a) 

and PVDF/gas nanofiber scaffolds (b), respectively. (c) SEM image of morphology of 

the cultured PC 12 cells on the PVDF/gas nanofibers. (d) MTT assay showing no 

indications of toxicity for cells on PVDF/gas nanofibers at day 3. (*P value ≤0.05, **P 

value ≤0.01) Error bar is calculated standard error.

The PVDF/gas nanofibers were directly electrospun on round glass sheets with 

similar pore size to the culture plates. We divided the experiments into two groups, 

namely the tissue culture plate (TCP) and PVDF/gas nanofibers. The glass sheets with 

nanofibers were soaked in 75% alcohol for 30 minutes, and then transferred to the 

corresponding culture plates, which was sterilized by ultraviolet light irradiation for 

1h. The above operations were performed in a sterile operating table. 

PC 12 cells were cultured in the environment of 37 ℃ and 5% CO2 in DMEM with 

10% FBS, 1% penicillin, 1% glutamine, and 0.01% fungizone until confluence. PC 12 



cells were then seeded at a density of 5 x 104 cells/ml in a culture plate. We set TCP 

as a control group, while the PVDF/gas nanofibers was the experimental group. 

Three parallel experiments were set up in the experimental group and the control 

group, and 500 μL cells suspension was added to each well. The plates were 

incubated in a 5% CO2 incubator at 37 ℃ for 3 h to allow the cells to adhere, and 

then 500 μL fresh medium was added to each well for further incubation. The 

activity of the cultured PC 12 cells was analyzed using a 3-(4, 5-dimethylthiazol-2yl)-2, 

5-diphenyl-2H-tetrazolium bromide (MTT) assay. The cells were first incubated with 

MTT solution (100 μL) in an incubator at 37 °C for 3 h. Then, the culture medium was 

removed, and the insoluble formazan was dissolved in 500μL dimethyl sulfoxide 

(DMSO) solvent in each well. The absorbance of the solution was measured using a 

microplate reader (Multiskan MK3, Thermo Fisher Scientific Inc., USA) at a 

wavelength of 490 nm. The cell membrane was stained with dye DiO. Specifically, 

the PC12 cells were fixed for 15 min in the cell incubator after cell staining, then 

washed three times with warm Phosphate Buffered Saline (PBS), and the associated 

fluorescent photographs were taken by inverted laser scanning confocal microscopy 

(LSCM, SP8, Leica). 

From the three-dimensional fluorescence plot, it was found that PC12 cells 

agglomerated in TCP (Figure S12a), while in the PVDF/gas nanofiber system, PC12 

cells were uniformly dispersed in the culture plate (Figure S12b), which was further 

verified by the SEM image. As shown in Fig. S12c, the cell aggregates are tightly 

bound to PVDF/gas nanofibers under the observation of SEM images. More 

importantly, even if the cells still had good cell activity after three days (Fig. S12d), it 

could be initially verified that the PVDF/gas nanofibers could be safely used in vivo.


