Supporting information

Synthesis and Characterization of a Fluorinated S-Nitrosothiol as the Nitric

Oxide Donor for Fluoropolymer-Based Biomedical Device Applications

Yang Zhou,^a Qi Zhang,^a Jianfeng Wu,^b Chuanwu Xi^b and Mark E. Meyerhoff*^a

 ^a Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
^b Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA

Fig. 1S UV-Vis spectra for the photolysis of SNAP (250.0 μ M) at 23 °C in a mixture of PBS and DMSO (50:50, v/v). Inset: Plot of absorbance at 342 nm vs. time for this reaction and solid line is fit to first order rate equation line (rate constant $k_{obs} = (1.50 \pm 0.03) \times 10^{-2} \text{ s}^{-1}$ and $t_{1/2} \sim 46 \text{ s}$).

Fig. 2S Plot of absorbance at 342 nm vs. time for the thermal decomposition of SNAP (206.0 μ M) at 37 °C in a mixture of PBS and DMSO (50:50, v/v), (rate constant $k_{obs} = (3.45 \pm 0.02) \times 10^{-5} \mu$ M Min⁻¹).

Fig. 3S NO flux for the PDVF tubings swelled in C₂F₅-SNAP (400.5 mg/mL in THF) under physiological conditions (PBS, 10 mM, pH 7.4, with 100 μ M EDTA at 37 °C in the dark), and the total loading of C₂F₅-SNAP in PVDF tubing was estimated to be ~ 32.3 nmol/mg.

(b)

Fig. 4S (a) Calibration curve for the concentration of C_2F_5 -NAP obtained in HPLC-MS and (b) Calibration curve for the concentration of C_2F_5 -NAP disulfide obtained in HPLC-MS.

Fig. 5S The corresponding black image for Fig. 9d

NMR spectra

