Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Supplementary Information for

A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose

Yanfang He,^{a,b} Xin Li,^a Xuechao Xu,^a Jianming Pan,^a Xiangheng Niu^{a,*}

^a Institute of Green Chemistry and Chemical Technology, School of Chemistry and

Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

^b School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013,

China

* Corresponding author. E-mail: niuxiangheng@126.com

Figure S1. (A) shows the full XPS pattern of the CoPW₁₁O₃₉ nanozyme. (B), (C), and (D) depict the fine P 2p, W 4f, and Co 2p XPS patterns, respectively.

Figure S2. Absorbance changes of different systems upon reaction time.

Figure S3. Fluorescence spectra of different systems. The excitation wavelength was

314 nm.

Figure S4. UV-Vis spectra of the $CoPW_{11}O_{39}+H_2O_2+TMB$ system in 0.1 M buffers with different pH values.

Figure S5. Photograph of the $CoPW_{11}O_{39}+H_2O_2+ABTS$ system in 0.1 M buffers with

different pH values.

Figure S6. Effect of nanozyme concentration on the catalyzed color reaction.

Figure S7. Steady-state kinetic measurements of the CoPW₁₁O₃₉ nanozyme toward

(A) H₂O₂ and (B) TMB, respectively.

Figure S8. Robustness of the $CoPW_{11}O_{39}$ nanozyme against harsh pH. The nanozyme was first treated by incubating it in 0.1 M buffers with different pH values for 2 h, and then its activity was measured under standard conditions.

Figure S9. Robustness of the CoPW₁₁O₃₉ nanozyme against harsh temperature. The nanozyme was first treated by incubating it in 0.1 M buffer (pH 7.0) at various temperatures for 2 h, and then its activity was measured under standard conditions.

Figure S10. Stability of the CoPW₁₁O₃₉ nanozyme for glucose detection.

Peroxidase mimic	Linear	range		Dof
	(mM)		LOD (μM)	Kel.
Fe ₃ O ₄ MNPs	0.05~1		30	1
MNP/NG	Up to 18		57.9	2
FeNPs@Co ₃ O ₄ HNCs	0.0005~0.03		50	3
WSe ₂ nanosheets	0.01~0.06		10	4
Fe-MIL-88NH ₂	0.002~0.3		0.48	5
Cu _{0.89} Zn _{0.11} O	0.025~0.5		1.5	6
3D GH-5	0.005~0.5		0.8	7
GO-COOH	0.001~0.02		1	8

 Table S1. Comparison of our peroxidase mimic with other peroxidase-mimicking

 nanozymes for colorimetric detection of glucose.

References

- 1. H. Wei and E. K. Wang, Anal. Chem., 2008, 80, 2250-2254
- W. J. Zhang, C. P. Chen, D. X. Yang, G. X. Dong, S. J. Jia, B. X. Zhao, L. Yan, Q.
 Q. Yao, A. Sunna and Y. Liu, *Adv. Mater. Interfaces*, 2016, 3, 1600590
- J. Zhao, W. F. Dong, X. D. Zhang, H. X. Chai and Y. M. Huang, Sens. Actuators., B, 2018, 263, 575-584.
- T. M. Chen, X. J. Wu, J. X. Wang and G. W. Yang, *Nanoscale*, 2017, 9, 11806-11813.
- 5 Y. L. Liu, X. J. Zhao, X. X. Yang and Y. F. Li, *Analyst*, 2013, 138, 4526-4531.
- A. P. Nagvenkar and A. Gedanken, ACS Appl. Mater. Interfaces, 2016, 8, 22301-22308.
- Q. Q. Wang, X. P. Zhang, L. Huang, Z. Q. Zhang and S. J. Dong, ACS Appl. Mater. Interfaces, 2017, 9, 7465-7471.
- 8 Y. J. Song, K. G. Qu, C. Zhao, J. S. Ren and X. G. Qu, *Adv. Mater.*, 2010, 22, 2206-2210.