

Fig. S1 Scanning electron microscopy image of GaP nanowire arrays. Tilt 30°.

**Fig. S2** A representative video of JIMT-1 cells cultured on glass and imaged using digital holographic microscopy with images every 5<sup>th</sup> minute for a total time of 48 hours. The video shows the 10 first images, 10 images from 24 hours of imaging, and last the 10 last images of the time-lapse.

**Fig. S3** A representative video of JIMT-1 cells cultured on flat GaP and imaged using digital holographic microscopy with images every 5<sup>th</sup> minute for a total time of 48 hours. The video shows the 10 first images, 10 images from 24 hours of imaging, and last the 10 last images of the time-lapse.

**Fig. S4** A representative video of JIMT-1 cells cultured on an array of GaP nanowires and imaged using digital holographic microscopy with images every 5<sup>th</sup> minute for a total time of 48 hours. The video shows the 10 first images, 10 images from 24 hours of imaging, and last the 10 last images of the time-lapse.

**Fig. S5** A representative video of MCF10A cells cultured on glass and imaged using digital holographic microscopy with images every 5<sup>th</sup> minute for a total time of 48 hours. The video shows the 10 first images, 10 images from 24 hours of imaging, and last the 10 last images of the time-lapse.

**Fig. S6** A representative video of MCF10A cells cultured on flat GaP and imaged using digital holographic microscopy with images every 5<sup>th</sup> minute for a total time of 48 hours. The video shows the 10 first images, 10 images from 24 hours of imaging, and last the 10 last images of the time-lapse.

**Fig. S7** A representative video of MCF10A cells cultured on an array of GaP nanowires and imaged using digital holographic microscopy with images every 5<sup>th</sup> minute for a total time of 48 hours. The video shows the 10 first images, 10 images from 24 hours of imaging, and last the 10 last images of the time-lapse.

**Fig. S8** JIMT-1 cells cultured on glass (**A**), flat GaP (**B**), or nanowires (**C**) were imaged by digital holographic microscopy every 5<sup>th</sup> min for 48 h. Cells were tracked using HStudio<sup>TM</sup> and cell family trees, motility, and migration data were extracted. The image consists of cell families where at least one branch could be tracked for the entire time-lapse. The color shows the motility and the size of the symbols shows migration. During the time-lapse, motility constantly increases, while migration can increase or decrease depending on how the cell is moving in comparison to its original position. For each substrate, six time-lapses were analysed. Motility and migration data are compiled in Figure S10. The number of trees that full-fill the requirement of 48 h tracking is dependent on the tendency for cells to migrate out of the imaging frame and the number of cells in the very first image of the time-lapse, i.e. the attachment of the cells.





**Fig. S9** MCF10A cells cultured on glass (**A**), flat GaP (**B**), or nanowires (**C**) were imaged by digital holographic microscopy every 5<sup>th</sup> min for 48 h. Cells were tracked using HStudio<sup>TM</sup> and cell family trees, motility, and migration data were extracted. The image consists of cell families where at least one branch could be tracked for the entire time-lapse. The colour shows the motility and the size of the symbols shows the migration. During the time-lapse, motility constantly increases, while migration can increase or decrease depending on how the cell is moving in comparison to its original position. For each substrate, six time-lapses were analysed. Motility and migration data are compiled in Figure S10. The number of trees that full-fill the requirement of 48 h tracking is dependent on the tendency for cells to migrate out of the imaging frame and the number of cells in the very first image of the time-lapse, i.e. the attachment of the cells. The figure shows that more MCF10A cells seeded on glass and flat GaP move out of the imaging frame than MCF10A cells seeded on nanowires.







**Fig. S11** Max migration speed on the various substrates. Max migration for all JIMT-1 and MCF10A cells during a 48 h time-lapse of cells seeded on glass, flat GaP, or nanowire substrates. Please observe the different y-axis in A and B.