Fe₃O₄@MnO₂@PPy nanocomposites overcome hypoxia: magnetic targeting assisted controlled chemotherapy and enhanced photodynamic/photothermal therapy

Ying Yang,^a Chen Wang,^a Chen Tian,^a Hailing Guo,^a Yuhua Shen,^{*a} and Manzhou Zhu^{*a}

Fig. S1 The changes in hydrodynamic size of $Fe_3O_4@MnO_2@PPy$ in medium at various conditions (0-24 h: pH 7.4, 24-48 h: pH 6.5, 48-72 h: pH 6.5+0.03%H₂O₂) measured by the DLS test.

Fig. S2 Absorption spectra of DPBF-containing solutions of (A) nothing under a 638nm laser irradiation (1.0 W·cm⁻²), (B) H₂O₂, (C) Fe₃O₄@MnO₂, (D) Fe₃O₄@PPy and (E)

Fe₃O₄@MnO₂@PPy without irradiation.

Fig. S3 Absorption spectra of a DPBF-containing solution of (A) $Fe_3O_4@MnO_2$, (B) $Fe_3O_4@PPy$, (C) $Fe_3O_4@MnO_2@PPy$, (D) $Fe_3O_4@PPy+0.03\%H_2O_2$ and (E) $Fe_3O_4@MnO_2@PPy+0.03\%H_2O_2$ under a 638nm laser irradiation (1.0 W·cm⁻²), respectively.

Fig. S4 Fluorescence microscopy images of HepG2 cells that received different treatment as indicated. Green color represents ${}^{1}O_{2}$ indicator DCFH-DA (scale bar=100 μ m).

Fig. S5 Relative viabilities of HepG2 cells after incubation with Fe₃O₄, Fe₃O₄@PPy and Fe₃O₄@MnO₂@PPy at different concentration (0 μ g/mL, 200 μ g/mL, 400 μ g/mL, 600 μ g/mL).

Fig. S6 Fluorescence microscopic images of HepG2 cells incubated with (A) medium, (B) Fe_3O_4 , (C) Fe_3O_4 @PPy and (D) Fe_3O_4 @MnO₂@PPy. HeGp2 cells were dyed in blue by Hoechst 33342, red by PI and the merged images are also shown, respectively. The scale bars are 200 μ m.