Supporting Information

Synthesis of fluorescent ionic liquid-functionalized silicon nanoparticles with tunable amphiphilicity and selective determination of Hg²⁺

Quan Li^a, Kaite Peng^a, Yanzhen Lu^a, Aoxin Li^a, Fenfang Che^a, Yuanyuan Liu^a,

Xingjun Xi^b, Qiao Chu^b, Tao Lan^b, Yun Wei^a*

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of

Chemical Technology, Beijing 100029, P. R. China

^bChina National Institute of Standardization, No. 4 Zhichun Road, Haidian District, Beijing 100191, P. R. China

Corresponding Author

* E-mail: weiyun@mail.buct.edu.cn; Fax: +86 10 64442928; Tel: +86 10 64442928

Experimental

1.1. Synthesis of [SmIm]Cl ILs

18.6 mL of 3-choropropyltrimethoxysilane and 8.0 mL of N-methylimidazole were mixed well and refluxed at 80 °C under N₂ gas for 2 days. The resultant mixture was washed for three times with hexane to remove unreacted impurities. Then, the excess hexane was removed by using rotary evaporation. Finally, a viscous and light yellow 1-(trimethoxysilyl)propyl-3-methylimidazolium chloride (ILs) was obtained.

Fig. S1 Zeta potentials of IL@SiNPs.

Fig. S2 High resolution XPS spectra of (A) C 1s, (B) N 1s, (C) O 1s and (D) Si 2p peak of IL@SiNPs.

Fig. S3 (A) The UV-vis absorption spectra of IL@SiNPs in the absence (black curve) and presence (red curve) of Hg^{2+} . (B) The fluorescence lifetime of IL@SiNPs measured by monitoring the emission at 440 nm when excited at 350 nm.

Fig. S4 (A) Fluorescence spectra of the IL@SiNPs in the presence of different Hg^{2+} concentrations (from top to bottom: 0, 2, 5µM) in tap water. (B) Fluorescence spectra of the IL@SiNPs in the presence of different Hg^{2+} concentrations (from top to bottom: 0, 2, 5µM) in river water.

Fig. S5 The PL emission spectra at different excitation wavelengths of IL@SiNPs_{-NTf2} in acetonitrile, ethyl acetate, DMF, and acetone, respectively.

Fig. S6 The Quantum yield φ of IL@SiNPs_{-Cl} and IL@SiNPs_{-NTf2} in various solvents.

Materials	Linear range (µM)	LOD (µM)	Ref
Tyrosine-based bsensor	0-0.1	0.01	1
Naphthalimide-MNPs	0.1-4.5	0.07	2
Graphene quantum dots	0.8-9.0	0.10	3
Polymer Sensor	1-30.0	0.73	4
N-doped Carbon Dots	0-25.0	0.23	5
N,S-doped Carbon Dots	0-40.0	2	6
IL@SiNPs	0-40.0	0.45	This work

Table S1 Comparison of different fluorescent probes for Hg²⁺ detection.

References

- 1 D. H. Kim, J. H. Seong, H. S. Lee and K. H. Lee, Sens. Actuators B: Chem., 2014, 196, 421-428.
- 2 B. C. Zhu, J. Zhao, H. Q. Yu, L. G. Yan, Q. Wei and B. Du, Opt. Mater., 2013, 35, 2220-2225.
- 3 B. J. Wang, S. J. Zhuo, L. Y. Chen and Y. J. Zhang, Spectrochim. Acta. A., 2014, 131, 384-387.
- 4 J. F. Li, Y. Z. Wu, F. Y. Song, G. Wei, Y. X. Cheng and C. J. Zhu, *J. Mater. Chem.*, 2012, 22, 478-482.
- 5 R. Z. Zhang and W. Chen, Biosens. Bioelectron., 2014, 55, 83-90.
- 6 L. Li, B. Yu and T. Y. You, Biosens. Bioelectron., 2015, 74, 263-269.