A novel label-free photoelectrochemical immunosensor based on NCQDs and Bi₂S₃ co-sensitized hierarchical mesoporous SnO₂ microflowers for detection of NT-proBNP

Dawei Fan^{a,*}, Chunzhu Bao^a, Xin Liu^a, Dan Wu^a, Yong Zhang^a, Huan Wang^a, Bin Du, Qin Wei^{a,*}

^a Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.

Corresponding author:

*E-mail: jndxfandawei@126.com & sdjndxwq@163.com

Tel: +86-531-82760510

1. Materials

Bovineserum albumin (BSA) was obtained from Sigma-Aldrich (Beijing, China). Thioglycolic acid (TGA) was obtained from Tianjin Kermel Chemical Reagent Co. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were obtained from Aladdin Reagent Database Inc. (Shanghai, China). Ultrapure water (Milli-Q, Millipore) used in all experiments was deionized to 18.25 M Ω ·cm. ITO glass (resistivity 10 Ω /sq) was obtained from Zhuhai Kaivo Electronic Components Co., Ltd. China. The other materials were analytical pure without further purification.

2. Apparatus

A three-electrode system was used, with a platinum wire as a counter-electrode, saturated calomel electrode as a reference electrode and modified ITO electrode (2.5×0.8 cm²) as the working electrode. Before preparation of PEC sensor, ITO substrates were cleaned by immersion for 30 min at 50°C in a series of ultrasonically agitated solvents (acetone, H₂O, ethanol, H₂O) and dried under a nitrogen stream. Scanning electron microscope (SEM) images and energy dispersive spectrometry (EDS) were tested by a field emission SEM (Zeiss, Germany). Transmission electron microscope (120 kV). HR-TEM images were obtained using a JEOL JEM-2100F (Tokyo, Japan). X-ray diffraction (XRD) patterns were collected on a D8 advance X-ray diffractometer (Bruker AXS, Germany). UV-vis spectra were obtained

on a Shimadzu UV-3101PC spectrometer (Japan). Electrochemical impedance spectroscopy (EIS) analysis was performed on an Zahner electrochemical workstation (Germany) with a three-electrode system in a 5.0 mmol/L [Fe(CN)₆]^{3-/4-} solution containing 0.10 mol/L KCl. Fourier transform infrared (FTIR) spectrum was obtained on Shimadzu VERTEX 70 spectrometer.

Fig. S1. Wavelength range of the LED light resource.

3. The TEM image and XRD pattern of pure Bi₂S₃

Fig. S2. The TEM image (A) and XRD pattern (B) of pure Bi₂S₃.

4. Time-based photocurrent response curves of ITO/Bi₂S₃, ITO/SnO₂/Bi₂S₃,

ITO/NCQDs/Bi₂S₃.

Fig. S3. Time-based photocurrent response curves of ITO/Bi₂S₃, ITO/SnO₂/Bi₂S₃,

ITO/NCQDs/Bi₂S₃. The applied potential was 0 V.

5. Simulation parameters of the equivalent circuit components

Electrode	R _s	$R_{\rm et}$	$C_{\rm dl}$	Z_{w}
	(Ω)	(Ω)	(F)	
ITO	59.15	14.18	3.177×10 ⁻⁶	0.008131
ITO/SnO ₂	62.77	19.36	4.523×10 ⁻⁶	0.006400
ITO/SnO ₂ /NCQDs	61.93	21.71	3.733×10 ⁻⁶	0.009014
ITO/SnO ₂ /NCQDs/Bi ₂ S ₃	61.13	23.42	6.274×10 ⁻⁶	0.009339
ITO/SnO ₂ /NCQDs/Bi ₂ S ₃ /TGA	62.57	31.79	4.538×10 ⁻⁶	0.007043
ITO/SnO2/NCQDs/Bi2S3/TGA/(EDC/NHS)	59.86	36.86	5.191×10 ⁻⁶	0.007704
ITO/SnO2/NCQDs/Bi2S3/TGA/(EDC/NHS)/Anti-	60.52	49.91	6.045×10 ⁻⁶	0.007258
NT-proBNP				
ITO/SnO2/NCQDs/Bi2S3/TGA/(EDC/NHS)/Anti-	60.28	121.1	8.401×10 ⁻⁶	0.004621
NT-proBNP/BSA				
ITO/SnO2/NCQDs/Bi2S3/TGA/(EDC/NHS)/Anti-	58.29	123.6	6.486 ×10 ⁻⁶	0.003928
NT-proBNP/BSA/NT-proBNP				

Table S1. Simulation parameters of the equivalent circuit components

6. Selectivity of experimental conditions

Fig. S4. Optimization of experimental conditions: (A) SnO₂ concentration, (B)

Bi(NO₃) ₃ concentration, (C) pH value, (D) AA concentration, the applied potential

was 0 V.

7. Comparison of various methods for NT-proBNP detection

Method	Linear range	Linear range Detection limit	
Cyclic Voltammetry	$0.02-100 \text{ ng} \cdot \text{mL}^{-1}$	$6 \text{ pg} \cdot \text{mL}^{-1}$	1
microfluidic immunoassay	0.005-1.67 ng·mL ^{−1}	$0.003 \text{ pg} \cdot \text{mL}^{-1}$	2
enzyme-multiplied immunoassay	$0.001-10 \text{ ng} \cdot \text{mL}^{-1}$	$1 \text{ pg} \cdot \text{mL}^{-1}$	3
SERS	$0.01-100 \text{ pg} \cdot \text{mL}^{-1}$	0.75 fg·mL ^{-1}	4
Electrochemiluminescence	$0.0005-100 \text{ ng} \cdot \text{mL}^{-1}$	$0.28 \text{ pg} \cdot \text{mL}^{-1}$	5
Photoelectrochemical	0.0008 - 45 ng·mL ⁻¹	0.32 pg·mL ⁻¹	6
immunoassay			

Table S2. Comparison of various methods for NT-proBNP detection

This work	$0.01-50 \text{ ng} \cdot \text{mL}^{-1}$	$3.7 \text{ pg} \cdot \text{mL}^{-1}$	This work

8. Application of the fabricated PEC sensor in human serum

Table S3. Determination of NT-proBNP added in human serum with the fabricated

Human serum	The addition	The detection content	Average	RSD	Recovery
sample	content	(ng·mL ⁻¹)	value	(%)	(%)
(ng·mL ⁻¹)	(ng·mL ⁻¹)		(ng·mL ⁻¹)		
	0.80	1.88, 1.79, 1.82, 1.83, 1.90	1.84	2.46	98.8
1.05	1.00	2.09, 1.98, 2.02, 2.14, 2.10	2.07	3.13	102
	1.20	2.28, 2.23, 2.19, 2.30, 2.08	2.22	3.94	97.5

PEC sensor

Reference

- Y. Zhuo, W. J. Yi, W. B. Lian, R. Yuan, Y. Q. Chai, A. Chen and C. M. Hu, *Biosensors & Bioelectronics*, 2011, 26, 2188-2193.
- 2. W. Liang, Y. Li, B. Zhang, Z. Zhang, A. Chen, D. Qi, W. Yi and C. Hu, *Biosens. Bioelectron.*, 2012, **31**, 480-485.
- 3. H. Han, J. C. Pyun, H. Yoo, H. S. Seo, B. H. Jung, Y. S. Yoo, K. Woo and M. J. Kang, Anal. Chem., 2014, 86, 10157-10163.
- 4. Y. He, Y. Wang, X. Yang, S. Xie, R. Yuan and Y. Chai, Acs Appl Mater Interfaces, 2016, 8, 7683-7690.

- 5. L. Shi, X. Li, W. Zhu, Y. Wang, B. Du, W. Cao, Q. Wei and X. Pang, ACS sensors, 2017, 2, 1774-1778.
- J. Feng, F. Li, X. Li, Y. Wang, D. Fan, B. Du, Y. Li and Q. Wei, *Biosensors & bioelectronics*, 2018, **117**, 773-780.