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Scheme S1. The synthetic route of the probe. Reaction conditions: (a) malononitrile, piperidine,
glacial acetic acid, EtOH, reflux, N, protection; (b) p-hydroxybenzaldehyde, piperidine,
acetonitrile, reflux, N, protection; (c) Hexamethylenetetramine, trifluoroacetic acid, reflux; (d)
DIEPA, 24-dinitrofluorobenzene, dry CH,Cl,, room temperature. (e¢) DIEPA, 24-
dinitrofluorobenzene, dry CH,Cl,, room temperature.

The synthesis of NDCM

Isophorone (2.3 g, 16.7 mmol), malononitrile (1.32 g, 20.0 mmol), piperidine (0.2 mL, 2.0 mmol)
and glacial acetic acid (0.10 g, 1.6 mmol) were dissolved in 100 mL EtOH, Then, the mixture was
refluxed for 6 h under argon atmosphere. After the solvent was removed, the residue was dissolved
with CH,Cl,, washed with water, and dried over Na,SO,. Finally, the solvent was evaporated under
reduced pressure, and the crude product was purified by silica column chromatography
(petroleum/dichloromethane = 1:2, v/v) to give a white solid (2.1 g, 67.7%). 'H NMR (400 MHz,
DMSO): 6 6.56 (d, J= 1.2 Hz, 1H), 2.53 (s, 2H), 2.23 (s, 2H), 2.05 (s, 3H), 0.95 (s, 6H). 3C NMR
(126 MHz, DMSO): 171.28, 162.37, 119.38, 113.42, 112.63, 76.08, 44.69, 41.71, 31.87, 27.04,

24.99. HRMS: calculated for [M-H] ~: 185.1079; found: 185.1089.
The synthesis of NDCM-OH

NDCM (1 g, 5.4 mmol), p-hydroxybenzaldehyde (732 mg, 6.0 mmol), five drops of piperidine
were dissolved in 40 mL anhydrous acetonitrile. The mixture was refluxed for 5 h under argon

atmosphere. Subsequently, the solvent was removed under reduced pressure. The resulting residue
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was dissolved in 20 mL dichloromethane, washed with water for three times, and dried over
anhydrous Na,SO,. After the removal of the solvent, the crude product was purified by silica
column chromatography (dichloromethane: acetic ether = 100:1) to afford the NDCM-OH as a
red solid (1.17 g, 75%). '"H NMR (400 MHz, DMSO): 3 9.98 (s, 1H), 7.55 (d, J = 8.7 Hz, 2H),
7.29 —7.14 (m, 2H), 6.83 ~ 6.76 (m, 3H), 2.59 (s, 2H), 2.53 (s, 2H), 1.01 (s, 6H). *C NMR (126
MHz, DMSO): 6 170.23, 159.31, 156.67, 138.25, 129.83, 127.10, 126.22, 121.34, 115.85, 114.09,
113.27, 74.79, 42.31, 38.19, 31.62, 27.41. HRMS: calculated for [M-H] ~: 289.1341; found:
289.1351

The synthesis of NDCM-CHO-OH

Hexamethylenetetramine (168 mg, 1.2 mmol) was added to solution of NDCM-OH (290.0 mg,
1.0 mmol) in trifluoroacetic acid (10 mL). The mixture was refluxed for 5 h. After complete
reaction, the solvent was evaporated under a rotary evaporator, diluted with water and then
neutralized with NaOH until the pH reached 7.0. Subsequently, the solution was extracted with
dichloromethane. The organic layer was washed with water for three times, dried over anhydrous
sodium sulfate. The crude product was purified by silica gel column chromatography with
dichloromethane as the eluent to afford NDCM-CHO-OH as a yellow solid (116.6 mg, 43%). 'H
NMR (400 MHz, DMSO): 6 11.15 (s, 1H), 10.29 (s, 1H), 7.97 (d, J = 2.2 Hz, 1H), 7.89 (dd, J =
8.7,2.2 Hz, 1H), 7.37 ~ 7.25 (m, 2H), 7.04 (d, J = 8.6 Hz, 1H), 6.88 (s, 1H), 2.61 (s, 2H), 2.53 (s,
2H), 1.01 (s, 6H). BC NMR (126 MHz, DMSO): 6 190.63, 170.27, 161.87, 156.09, 136.69, 134.96,
128.75, 127.96, 127.64, 122.62, 122.19, 118.08, 113.92, 113.08, 75.75, 42.27, 38.14,31.62, 27.41.

HRMS: calculated for [M-H] ~: 317.1290; found: 317.1293.
The synthesis of NDCM-1

The control compound NDCM-1 was synthesized according to the similar synthesis procedure of
NDCM-2 using NDCM-OH as the reactant. 'H NMR (500 MHz, DMSO-dg): & 10.18 (s, 1H),
8.93(d,J=2.7Hz, 1H), 8.47 (dd, J =9.2, 2.8 Hz, 1H), 8.30 (d, J = 1.9 Hz, 1H), 8.10 (dd, J = 8.6,
1.9 Hz, 1H), 7.57 (d, ] = 16.2 Hz, 1H), 7.46~7.29 (m, 3H), 6.96 (s, 1H), 2.63 (s, 2H), 2.55 (s, 2H),
1.02 (s, 6H). 3C NMR (DMSO-dg): 6 170.26, 155.57, 154.64, 154.33, 141.77, 139.68, 136.08,
133.91, 130.05, 129.97, 129.65, 123.03, 121.89, 120.40, 120.06, 113.76, 112.95, 76.54, 42.28,
38.17, 31.65, 27.41. HRMS: calculated for [M-H]™: 455.1356; found: 455.1368.



Table S1. A comparison of NIR fluorescent probes for H,S.
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Figure S1. The spectra of NDCM-OH and NDCM-CHO-OH in PBS-DMSO solution (pH=7.4, 1:1). (a)
The normalized spectra of NDCM-OH. (b) The normalized spectra of NDCM-CHO-OH. (¢) Comparison

of two fluorophores in absorbance. (d) Comparison of two fluorophores in fluorescence emission.

Table S2. The photophysical properties of fluorophore NDCM-CHO-OH in different co-solvents (PBS

solution with addition of 50% organic solvents).

solvents hmax (nM) e max (X104)  hem (nm) D 8 shift(nm)
CH;CN 490 4.01 660 0.233777 170
DMSO 505 4.53 664 0.381135 159
Acetone 505 4.38 664 0.157977 159
DMF 510 4.72 664 0.368865 154
CH;OH 485 4.32 652 0.200058 167
THF 525 4.19 666 0.233269 141
1,4-Dioxane 505 4.45 662 0.279373 157
EtOH 500 4.74 658 0.215895 158




Figure S2. The optical spectra of fluorophore NDCM-CHO-OH and NDCM-OH in different co-solvents
(PBS solution with addition of 50% organic solvents). (a) The absorption spectrum of NDCM-OH in
different co-solvents. (b) The absorption spectrum of NDCM-CHO-OH in different co-solvents. (¢) The
fluorescence spectrum of NDCM-OH in different co-solvents. (b) The fluorescence spectrum of NDCM-
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Figure S3. The spectra for the verification of the reaction product. (a) The fluorescence spectra of NDCM-2
(10 uM), NDCM-2 (10 uM) + 100 uM Na,S and NDCM-CHO-OH (10 uM) in PBS-CH;CN solution (pH
7.4, 1:1), excitation wavelength: 490 nm. (b) The fluorescence spectra of NDCM-1 (10 uM), NDCM-1(10
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uM) + 100 uM Na,S and NDCM-OH (10 pM) in PBS-DMSO solution (pH 7.4, 1:1), excitation

wavelength: 560 nm.

(a) (b)

o ]_0_ 8 ].0'

2 4 15 min = 0.8

Z 0.8 2 0.8

g g

2 0.6 2 0.6

2 ]

3 04 g 04¥

E Té 0.2

g 0.2 £ o

7 0.0 —— 7 0.0

350 400 450 500 550 600 650 350 400 450 500 550 600 650
Wavelength (nm) Wavelength (nm)

Figure S4. The absorption response behavior toward H,S in PBS-CH;CN solution (pH=7.4, 1:1). (a) The
time-dependent normalized absorption spectra change in 15 min upon the addition of 100 uM Na,S. (b)
The normalized absorption spectra change of NDCM-2 toward different Na,S concentration (0, 10, 20,
30,40, 50, 60, 70, 80, 90, 100 uM) for 15 min. Excitation wavelength: 490 nm.
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Figure S5. Fluorescence response of probe NDCM-2 (10 uM) toward different concentrations of Na,S. (a)
The time-dependent fluorescence intensity (660 nm) change of NDCM-2 without the addition of Na,S. (b)
The linear relationship between the fluorescence intensity (660 nm) and extremely low Na,S concentration
(0,0.06,0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, 1 uM). (c) The linear relationship between the fluorescence
intensity (660 nm) and low Na,S concentration (0, 0.06, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4,
5, 6,7 uM). (d) The fluorescence intensity (660 nm) change of NDCM-2 toward various Na,S concentration
(0, 0.06, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 10, 30, 60, 100 uM). Excitation

wavelength: 490 nm.
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Figure S6. Verifying the sensing mechanism of NDCM-2 toward H,S by HRMS.
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Figure S7. '"H NMR for the verification of the sensing mechanism. (a) '"H NMR spectra (6 6.5~11.5) of

NDCM-2. (b) The fluorophore NDCM-CHO-OH. (c) The isolated product of NDCM-2 + Na,S.

11



() (b)
8 z 1.0+
E Z 0.8
E g"
7] =
&= i 0.6
E S 0.4-
E 5 0.2 other analytes
(=] Z =
< Other analytes 0.0
350 400 450 500 550 600 650 560 600 640 680 720 760
Wavelength (nm) Wavelength (nm)
(©)

(d)

Figure S8. The selectivity of NDCM-2 toward H,S over various biological related analytes. (a) Absorption
spectra change of NDCM-2 (10 uM) toward various analytes (Na,S: 100uM, other analytes: 1 mM) in
PBS-CH;CN solution (pH 7.4, 1:1). (b) Fluorescence spectra change of probe NDCM-2 (10 uM) toward
various analytes (Na,S: 100uM, other analytes: 1 mM) in PBS-CH;CN solution (pH 7.4, 1:1). (¢) Color
changes of probe NDCM-2 (10 uM) upon the addition of various analytes (100 uM for Na,S and 1 mM for
other analytes) under bright field. (d) Fluorescence color changes of probe NDCM-2 (10 uM) upon the
addition of various analytes (100 pM for Na,S and 1 mM for other analytes) under a 365 nm UV-lamp. 1:
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HCOys, 2: HPOy, 3: Glucose, 4: Zn?*, 5: AcO~, 6: Ni?*, 7: CI, 8: N3, 9: I, 10: S,05%7, 11: Cirtrate, 12:
S042, 13: NO5, 14: S,0.%, 15: SO5%, 16: Pro, 17: Met, 18: Val, 19: Leu, 20: Ser, 21: Glu, 22: Ala, 23:
Cys, 24: GSH, 25: Hcy, 26: H,0,, 27: Na,S. Excitation wavelength: 490 nm.
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Figure S9. The selectivity of NDCM-2 toward H,S over biothiols (GSH, Hcy, Cys) in PBS-CH;CN
solution (pH=7.4, 1:1). (a) The normalized fluorescence spectra change of NDCM-2 upon addition of Na,S
(100 uM) and three biothiols (100 M), inset: the color change of NDCM-2 toward Na,S and three biothiols
under UV Lamp (365 nm). (b) The normalized fluorescence intensity at 660 nm changed with time upon

addition of 100 uM Na,S and100 uM GSH, Hcy, Cys. The excitation wavelength: 490 nm.
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Figure S10. Density functional theory (DFT) optimized structures and frontier molecular orbitals (MOs)
of NDCM-1 and NDCM-OH. The calculations were obtained by DFT at the B3LYP/6-311G (d, p)/level

using Gaussian 16 program.

13



—
=~
Il

—=—NDCM-2
——NDCM-2+HZS

=
=

Normalized intensity
=
GI\

° o o
o

Figure S11. Fluorescence intensity of probe NDCM-2 (10 pM) at 660 nm under different pH values
(from 3.0 to 9.0) in the absence and presence of Na,S (100 uM). Excitation wavelength: 490 nm.
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Figure S12. Photobleaching curves for the final reaction solution of NDCM-2 and 100 uM H,S
exposed to the light irradiation under the high voltage mode (800 V) of fluorescence

spectrophotometer.
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Figure S13. Evaluating the preservation stability of probe NDCM-2. (a) Fluorescence spectra
change of the stock solution of probe NDCM-2 (10 uM) in the preservation time period of 0-7
days. Excitation wavelength: 490 nm. (b-c) The NMR spectra comparison of NDCM-2 before and

after preservation for four months. The spectrum of (c) was measured after the preservation of pure
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Figure S14. Cytotoxicity of the probe NDCM-2 against HeLa cells evaluated by a standard MTT assay,

the data are presented as mean=+S.D.
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Figure S15. The confocal fluorescence imaging of the basal H,S in four different cells using probe NDCM-
2 (10 uM). (2A) COS-7 cells. (2B) MCF-7 cells. (2C) HepG-2 cells. (2D) HeLa cells. 1A, 1B, 1C, and 1D
are the corresponding bright-field image of 2A, 2B, 2C, and 2D. The fluorescence images were obtained

by collecting the emissions ranging from 620 to 720 nm upon excitation at 488 nm. Scar bar=20 pum.

.

Figure S16. The co-staining experiments of NDCM-2 (10 uM) in HepG-2 cells using Hoechst 33342 as
the nucleus staining dyes. (1A): Bright field. (1B): Fluorescence imaging of basal H,S using NDCM-2.
(2A): Fluorescence imaging of Hoechst 33342. (2B): Merge of (1B) and (2A). Excitation wavelength: 405
nm for Hoechst 33342 and 488 nm for NDCM-2. The fluorescence images of NDCM-2 were obtained by
collecting the emissions at 620-720 nm upon excitation at 488 nm and the fluorescence images of Hoechst

33342 were obtained by collecting the emissions at 420-520 nm. Scar bar=20 pm.



Figure S17 The co-staining experiments of NDCM-2 (10 uM) in HeLa cells using Lyso-tracker red as the
specific lysosome staining dyes. (A): Bright field. (B): Fluorescence images of NDCM-2 against 100uM
exogenous H,S. (C): Fluorescence images of Lyso-tracker red. (D): Merge of (B) and (C). Excitation
wavelength: 559 nm for Lyso-tracker red and 488 nm for NDCM-2. The fluorescence images of NDCM-
2 and Lyso tracker red were obtained by collecting the emissions at 620-720 nm and 560-600 nm with
confocal laser scanning microscopy (Olympus, FV1000-1X81), respectively. Scar bar=20 um.

Figure S18. Fluorescence images of NDCM-2 against different concentration of exogenous H,S (0, 2 uM,
20 uM, 50 uM, 100 uM) in living HeLa cells. (2A): PPG (1 mM) pre-treated cells were incubated with 10

uM NDCM-2 for 30 min only. (2B-2E): PPG (1 mM) pre-treated cells were incubated with 5 uM, 20 puM,
17



50 uM, 100 uM Na,S for 30 min respectively, then incubated with 10 uM NDCM-2 for 30 min. (1A-1E)
and (3A-3E) are the corresponding bright filed and merge field of (2A-2E), respectively. The fluorescence
images were obtained by collecting the emissions at 620-720 nm under the excitation wavelength of 488

nm with confocal laser scanning microscopy (Olympus, FV1000-IX81). Scar bar=20 pm.

Figure S19. Evaluating the photostability of probe NDCM-2 in the sensing process against H,S in living
HelLa cells. The cells were incubated with 100 uM H,S at 37 °C for 30 min, followed by the incubation of
10 uM NDCM-2 for 30 min at 37 °C. Images were taken by confocal fluorescent microscopy (Olympus,
FV1000-IX81) for different times (0, 120s, 240s, 360s, 480s, 600s, 720s, 840s, 960s, 1080s, 1200s, 1320s)

with the excitation at 488 nm and the emission collection range from 620 to 700 nm. Scale bar=20 um.
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Figure S22. HRMS spectra of NDCM
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Figure S23. 1H NMR spectra of NDCM-OH in DMSO-dg
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Figure S24. 3C NMR spectra of NDCM-OH in DMSO-d,
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Figure S25. HRMS spectra of NDCM-OH
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Figure S26. '"H NMR spectra of NDCM-OH in DMSO-d,
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Figure S28. HRMS spectra of NDCM-CHO-OH
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Figure S29. '"H NMR spectra of NDCM-1 in DMSO-dg
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Figure S30. 3C NMR spectra of NDCM-1 in DMSO-d,

20180530-QM-M456 #6-7 RT: 0.04-0.05 AV:2 NL: 6. 49E6
T: FTMS - p ESI Full ms [120.00-1000.00]
B 455.1368

85

90

85
80

75

70

431.8397

518.1326
5 289.1350 421.5218 9112804

1 1790560 2390773, | 3251851 3758501 4817507 | 5531035 6460558 7064354 7758208 619.9052
Bk £ A O R i S L2l SN PSR o B T

957.1104
iy T e e Mg Mtiasinace aesant |
200 300 400 500 600 700 800 900 1000
miz

Figure S31. HRMS spectra of NDCM-1
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Figure S32. "H NMR spectra of NDCM-2 in DMSO-d,

Figure S33. 3C NMR spectra of NDCM-2 in DMSO-d,
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Figure S34. HRMS spectra of NDCM-2
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