SUPPORTING INFORMATION

Seed-mediated synthesis of plasmonic gold nanoribbons using cancer cells for hyperthermia applications

Ajay Vikram Singh^{*a}, Yunus Alapan^a, Timotheus Jahnke^b, Peter Laux^c, Andreas Luch^c, Amirreza Aghakhani^a, Soheila Kharratiankhameneh^d, Mehmet Cengiz Onbasli^e, Joachim Bill^b, Metin Sitti^a

^aPhysical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
^bInstitute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany.
^cDepartment of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany

^dKoç University, Department of Materials Science and Engineering, Sarıyer, 34450 Istanbul, Turkey ^eKoç University, Department of Electrical and Electronics Engineering, Sarıyer, 34450 Istanbul, Turkey

Supporting Table

Table S1. Physicochemical properties of spherical seeds NPs and 2D nanoribbons

	Mobility (µm cm/s V)	Zeta Potential (mV)	Radius (nm)
Spherical NPs (seed)	-0.55 ± 0.03	-7.22 ± 0.5	20.1 ± 1.5
2D nanoribbons	-1.13 ± 0.21	-14.68 11	202 ± 13

Supporting Figures

Figure S1. Qualitative and quantitative characterization of surface topography and nanoribbons length/diameter spanning over cell membrane with laser scanning microscopy. (A) 3D topography and (B) optical image of Au-nanoribbon lengths and diameters over mCF7 cells.

Figure S2. Histogram showing the nanoribbon diameter distribution.

Figure S3. SEM analysis of the influence of gold ion concentration (A-B) versus spherical "seed" NPs concentration on nanoribbon yield. (E-F) elemental mapping and EDAX analysis of nanoribbons.

Figure S4. Elemental mapping to demonstrate N, C and O content analysis over the surface of MCF7 cells synthesizing nanoribbons.

Figure S5. (A) Scheme for computing the propagation constant of wedge-plasmon modes using 3D-FDTD.(B) Energy-filtered images of the triangular nanoplates, fused platelets as a train of nanotriangles and SEM/TEM micrograph. (C) Zoomed version of SEM image with a region of interests (box).

Figure S6. Quantitative line graph extracted from thermograms analyses to show rise in temperature over time.

Figure S7. UV-Vis spectra of nanoribbons after purification via centrifugation.

Figure S8. Viable cell quantification after NIR laser irradiation to control experiments and plasmonic nanoribbon treated cancer cells.