Supporting Information Available

Label-free non-invasive fluorescent pattern discrimination of thiols and chiral recognition of cysteine enantiomers in biofluids using bioinspired copolymers-Cu²⁺ hybrid sensor array regulated by pH

Zi-Yang Lin, Xin-Yue Han, Zi-Han Chen, Guoyue Shi, Min Zhang*

School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China. *Email: <u>mzhang@chem.ecnu.edu.cn</u>

Figure S1. Fluorescence response of PDA/PEI₄₈ in acetate acid, phosphoric acid and citric acid at pH=4.

Figure S2. The optimization of concentration for Cu^{2+} in the system of PDA/PEI₄₈- Cu^{2+} -GSH in acetate buffer (pH=4).

Figure S3. The optimization of reaction time between PDA/PEI₄₈-Cu²⁺ and GSH in acetate buffer (pH=4).

Figure S4. (a) Pattern responses to the mixtures comprising of GSH and L-Cys in aqueous solution. (b) Heat map derived from the fluorescence intensity of PDA/PEI₄₈-Cu²⁺ sensors towards different mixtures of GSH and L-Cys. (c) Canonical score plots for the fluorescence response patterns obtained with PDA/PEI₄₈-Cu²⁺ sensors different mixtures of GSH and L-Cys. (d) Plot of PC1 vs the mixtures of GSH and L-Cys with different molar ratios indicated.

Figure S5. Pattern responses of PDA/PEI₄₈- Cu^{2+} sensors towards amino acids and metal ions.

а				_	b	0.6				
PC2 (0.612%)	0.4- 0.2- 0.0- -0.2- (GSH, μM)				PC2 (17.083%)	$ \begin{array}{c} 0.0 \\ 0.4 \\ 5:35 \\ 0.2 \\ 0.2 \\ 0.0 \\ -2 \\ \hline (\mu M) \\ 0:40 \\ \hline (\mu M)$				
	-2			-2 0 2 PC1 (82 540%)						
										,
		GSI	Н / µМ							
			Entry	Actual	DNTB method		Our method			
			Α	5	4.8		0-10			
	В			15 14		.91	10-20			
			с	25		5.42 2		0-30		
d	GSH / μM					L-Cy			s/μM	
	Entry	Actual	DNTB	0	Dur	Ac	tual	DN	ITB	Our
			method	me	thod		me		hod	method
	D	10	10.43	5	-15	30		30.89		25-35
	E	20	19.28	15	5-25	20		19	.12	15-25
	F	30	29.86	9.86 2		10		9.65		5-15

Figure S6. (a) Pattern response to the different spiked concentrations of GSH in saliva samples. (b) Pattern response to the mixtures comprising of GSH and L-Cys in saliva samples. Tables show the analytical performances of PDA/PEI₄₈-Cu²⁺ sensors toward (c) various concentrations of GSH and (d) mixtures of GSH and L-Cys compared with that to DTNB methods.

Figure S7. (a) (c) UV spectra of the DTNB method toward the detection of GSH and L-Cys; (b) (d) Plots of absorbance at 412 nm toward increasing concentration of GSH and L-Cys.