Surface modification of porous PLGA scaffolds with plasma for preventing dimensional shrinkage and promoting scaffold-cell/tissue interactions

Peiming Liu, [†] Lian Sun, [‡] Pingying Liu, ^{§, ⊥} Wenqian Yu, [†] Qianhui Zhang, [†] Weibing Zhang [‡], Jing Ma, [⊥] Pingsheng Liu, ^{*,†} Jian Shen^{*,†, #}

[†]Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials
Science, Nanjing Normal University, Nanjing 210023, P. R. China
[‡]Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing
210029, P. R. China
[§]School of Materials Science and Engineering, Jingdezhen Ceramic Institute,
Jingdezhen 333403, P. R. China
[⊥]School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, P. R. China
[#]Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University,
Nanjing 210093, P. R. China

*Corresponding Authors :

E-mail: liups@njnu.edu.cn (P. Liu); jshen@njnu.edu.cn (J. Shen)

Fig. S1 SEM micrographs on the surface of porous PLGA scaffolds prepared by various concentrations (4, 6, and 8 wt%).

Fig. S2 SEM micrographs in the cross-section of porous PLGA scaffolds prepared by various concentrations (4, 6, and 8 wt%).

PLGA scaffolds with varied plasma treatment time (s)

Fig. S3 Overall morphology changes (side view) of porous PLGA scaffolds with varied plasma treatment time (ranging from 30 to 300 s) as a function of incubation time in PBS at 37°C.

PLGA scaffolds with varied plasma treatment time (s)

Fig. S4 Overall morphology changes (top view) of porous PLGA scaffolds with varied plasma treatment time (ranging from 30 to 300 s) as a function of incubation time in PBS at 37°C.