Electronic Supplementary Information

Annexin V-Containing Cubosomes for Targeted Early Detection of Apoptosis in Degenerative Retinal Tissue

Yue Ding a† , Seong Hoong Chow a† , Guei-Sheung Liu b,c , Bo Wang d , Tsung-Wu Lin e , Hsien-Yi Hsuf, Anthony P. Duff i , Anton P. Le Brun i , and Hsin-Hui Shen $^{a,h^*}$

^aInfection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia

^bMenzies Institute for Medical Research, University of Tasmania, Tasmania, Australia

^cOphthalmology, Department of Surgery, University of Melbourne, Victoria, Australia

^dInfection and Immunity Program, Biomedicine Discovery Institute and Anatomy and Developmental Biology, Monash University, Clayton, Australia

^eDepartment of Chemistry, Tunghai University, Taichung City, Taiwan

^fSchool of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China

^gShenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China

^hDepartment of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Australia

ⁱAustralian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia

[†]Yue Ding and Seong Hoong Chow are equally to this work.

Monoolcin, A

Phytantriol, **B**

Figure 1: Chemical structures of (A) monoolein (MO) and (B) phytantriol (Phy).

Figure 2: DLS analysis of cubosomes in buffer, giving the average particle sizes around 200 nm.

Figure 3: (A) Synchrotron SAXS profiles showing the scattering profiles of the PSMO cubosomes (black line) and ANX-PSMO cubosomes (red line) (B) PSPhy cubosomes (black line) and ANX-PSPhy cubosomes (red line) in HEPES-2.5 mM CaCl₂ buffer at 37 °C.

Cell	Concenti	Assay		Reference		
Line	Phy	MO	Phy	MO	Phy	MO
A549	\geq 25 highly toxic	\leq 100 non-cytotoxic			1,2*	2*
СНО	\geq 25 highly toxic	\leq 50 non-cytotoxic	Alama	r Dhuo	1,2*,3	2*,4
HEK	At 20 toxic,	< 50 non-cytotoxic	Alamai Diue		3	5
	\geq 40 highly toxic					
HeLa	At 40 50% cell	\leq 1000 non-cytotoxic,	MTT		6	7*,8ª*,9ª*
	viability	at 166 ^a 70% cell viability		1		
L929	\leq 50 non-cytotoxic	At 40 IC50	MTT	MTS	10*	11

Table 1: Cytotoxicity of Phy-based and MO-based cubosomes in different cell line

*: Cell imaging in the reference, ^a: F108 was employed as stabilizer in the reported cubosomes. F127 was employed as stabilizer in unmarked reports. Phy: phytantriol-based cubosomes, MO: monoolein-based cubosomes.

	D ₂ O			CmSi			
	ρ	$ ho_{head}$	$ ho_{chain}$	ρ	$ ho_{head}$	$ ho_{chain}$	
SiO ₂	3.41			3.41			
POPS	0.49	3.47	-0.28	0.49	3.47	-0.28	
d ₃₁ -POPS	3.21	3.47	3.14	3.21	3.47	3.14	
d ₃₁ - POPC	2.82	1.88	3.14	2.82	1.88	3.14	
d ₃₁ -POPC/h-POPS	2.04	2.41	2.00	2.04	2.41	2.00	
d ₃₁ -POPC/d ₃₁ -POPS	2.95	2.41	3.14	2.95	2.41	3.14	
PSPhy	0.365	2.62	-0.336	-0.10	0.65	-0.34	
dANX	3.23			2.38			

Table 2: The theoretical scattering length density of materials used for data fitting

CmSi: scattering length density can be matched to silicon, ρ : scattering length density for the whole molecule, ρ_{head} : scattering length density for the head of molecule, ρ_{chain} : scattering length density for the chain of molecule.

Reference:

- J. Zhai, T.M. Hinton, L.J. Waddington, C. Fong, N. Tran, X. Mulet, C.J. Drummond, B.W. Muir, *Langmuir*. 2015, 31, 10871.
- 2. T.M. Hinton, F. Grusche, D. Acharya, R. Shukla, V. Bansal, L.J. Waddington, P. Monaghan, B.W. Muir, *Toxicol. Res.* **2014**, *3*, 11.
- 3. B.W. Muir, D.P. Acharya, D.F. Kennedy, X. Mulet, R.A. Evans, S.M. Pereira, K.L. Wark, B.J. Boyd, T.H. Nguyen, T.M. Hinton, et al., *Biomaterials*. **2012**, *33*, 2723.
- 4. J. Zhai, N. Tran, S. Sarkar, C. Fong, X. Mulet, C. J. Drummond, *Langmuir*. 2017, *33*, 2571.
- 5. T.E. Hartnett, K. Ladewig, A.J.O. Connor, P.G. Hartley, K.M. McLean, *RSC Adv.* **2015**, *5*, 26543.
- H.H. Shen, V. Lake, A.P. Le Brun, M. James, A.P. Duff, Y. Peng, K.M. McLean, P.G. Hartley. *Biomaterials*. 2013, 34, 8361.
- 7. S. Deshpande, E. Venugopal, S. Ramagiri, J.R. Bellare, G. Kumaraswamy, N. Singh, *ACS Appl. Mater. Interfaces.* **2014**, *6*, 17126.
- 8. A. Rosa, S. Murgia, D. Putzu, V. Meli, A.M. Falchi, Chem. Phys. Lipids. 2015, 191, 96.
- S. Murgia, A.M. Falchi, V. Meli, K. Schillen, V. Lippolis, M. Monduzzi, A. Rosa, J. Schmidt, Y. Talmon, R. Bizzarri, et al., *Colloids Surfaces B Biointerfaces*. 2015, 129, 87.
- 10. H.H. Shen, J.G. Crowston, F. Huber, S. Saubern, K.M. McLean, P.G. Hartley, *Biomaterials*. 2010, *31*, 9473.
- 11. N. Tran, X. Mulet, A.M. Hawley, T.M. Hinton, S.T. Mudie, B.W. Muir, E.C. Giakoumatos, L.J. Waddington, N.M. Kirby, C. J. Drummond, *RSC Adv.* **2015**, *5*, 26785.