Electronic Supplementary Information

Bead-type Polystyrene/Nano-CaCO₃ (PS/nCaCO₃) composites:

A high-performance adsorbent for the removal of interleukin-6

Yamin Chai^{a#}, Jie Chen^{a#}, Tingting Wang^a, Jian Chen^a, Yingda Ma^a, Guanghui Cheng^a, Chunran Li^a, Qian Zhang^a, Lailiang Ou^a*, Wenzhong Li^b*

^a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.

^b Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany

#: These authors contributed equally to this work.

*: Correspondence should be addressed to Lailiang Ou and Wenzhong Li

ouyll@nankai.edu.cn

bcrtlwz@gmail.com

Supporting figures and table

Fig. S1. TEM images of nCaCO₃ with different magnifications.

Fig. S2. t-Plots of N_2 adsorption isotherms for adsorbents: (a) PS/CaCO₃ and (b) PS.

Fig.S3. Photograph containing a few spheres for 2.5 wt% PS/nCaCO₃ by an optical microscope.

Fig. S4. Adsorption isotherms of IL-6 onto three adsorbents in plasma (T=37 $^{\circ}$ C, t=2 h, mean ± SD, n=3).

Fig. S5. Hemolysis assay for nCaCO₃ with different concentrations, where using NaCl as a negative control (first) and water as a positive control (second).

Fig. S6. Blood platelet adhesion assay for nCaCO₃ with different concentrations.

Fig. S7. Photograph of the dynamic model for hemoperfusion.

Fig. S8. The contents of Ca²⁺ vs time for PS/nCaCO₃ released in saline solution under flowing and sonication conditions.

Fig. S9. The load-displacement curves of (a) PS/nCaCO3 and (b) PS adsorbents.