Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Polymeric arsenicals as scaffolds for functional and responsive hydrogels

Joji Tanaka,^a Ji-Inn Song,^a Andrew M. Lunn, ^a Rachel A. Hand,^a Satu Häkkinen,^a Tara L. Schiller,^b Sébastien Perrier, ^{a,c,d} Thomas P. Davis, ^c Paul Wilson.*^{a,c}

^aDepartment of Chemistry, University of Warwick, Coventry, CV4 7AL, UK

^bWMG, University of Warwick, CV4 7AL, Coventry, UK

^cARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia

^dWarwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK

Reverse Phase High performance liquid chromatography (RP-HPLC)

Time (min)	A (%)	В (%)
0.00	90.0	10.0
15.00	50.0	50.0
25.00	0.0	100.0
27.00	90.0	10.0
35.00	90.0	10.0

The gradient of the mobile phase varied in each analysis and purification. The standard analysis method is as followed:

Calculation of AsAm content with respect to DMA by ¹H-NMR

Method 1

$$\frac{\int [2[M]_{AsAm} + 2[M]_{DMA}]_{1.0 - 1.8 \, ppm} - \frac{\int 4[[M]_{AsAm}]_{7.2 - 7.8 \, ppm}}{2}}{2} = [M]_{DMA}$$

Method 2

$$\frac{\int [[M]_{AsAm} + 7[M]_{DMA}]_{2.1 - 3.0 \, ppm} - \frac{\int 4[[M]_{AsAm}]_{7.2 - 7.8 \, ppm}}{4}}{7} = [M]_{DMA}$$

The value from each method was averaged.

Figure S1. Molecular weight data for polymeric arsenical scaffolds **P1 – P4** obtained from aqueous SEC

Table S1. Composition and molecular weight data for the polymeric arsenical scaffolds P1 – P4

	Composition*	<i>M</i> _n **	<i>M</i> _w **	Đ**
P1	P(DMAm _{0.98} -AsAm _{0.02})	95000	460000	4.8
P2	P(DMAm _{0.96} -AsAm _{0.04})	81000	330000	4.1
P3	P(DMAm _{0.94} -AsAm _{0.06})	110000	450000	4.1
P4	P(DMAm _{0.92} -AsAm _{0.08})	56000	310000	5.5

* from ¹H NMR (*vide supra*) ** from aqueous SEC

Figure S2: Image of 2.5 wt % arsenohydrogels **P1 – P4** in which **P1** and **P2** formed stable gels while **P3** and **P4** undergo syneresis, expelling up to 40% of the aqueous solution after 2 hours.

Figure S3: Rheology of the arsenohydrogel formation of **P1** (2.5 wt %, strain = 1.0 %, frequency = 10 rad.s⁻¹, temperature = 60 °C) in the presence of H_3PO_2 and KI

Figure S4: Rheology of the arsenohydrogel formation of **P2** (2.5 wt %, strain = 1.0 %, frequency = 10 rad.s⁻¹, temperature = 60 °C) in the presence of H_3PO_2 and KI

Figure S5: Rheology of the arsenohydrogel formation of **P3** (2.5 wt %, strain = 1.0 %, frequency = 10 rad.s⁻¹, temperature = 60 °C) in the presence of H_3PO_2 and KI

Figure S6: Amplitude sweep of arsenohydrogel of **P1** at 30 °C and frequency of 1 rad $s^{-1} 1^{st}$ cycle (left) and 2^{nd} (right)

Figure S7: Representative stress/strain curve for arsenohydrogel of P1 (2.5 wt%).

Figure S8: Representative stress/strain curve for arsenohydrogel of P2 (2.5 wt%).

Figure S9: Representative stress/strain curve for arsenohydrogel of P3 (2.5 wt%).

Figure S10: Representative stress/strain curve for arsenohydrogel of P4 (2.5 wt%).

Figure S11: Image of the arsenohydrogel P1 showing catastrophic failure after the first cycle of compression testing.

Figure S12: Overlay of the stress/strain curves of arsenohydrogel **P3** through 3 cycles of compression tests (load 5 N, hold 30 secs).

Figure S13: Overlay of the stress/strain curves of arsenohydrogel **P4** through 3 cycles of compression tests (load 5 N, hold 30 secs).

Figure S14: Scanning electron microscopy of dry 10 wt % arsenohydrogels after dialysis and lyophilisation. **P1** = 2 mol% AsAm; **P2** = 4 mol% AsAm (Scale bar = 2 μ m).

	Wt %ª			
	С	Ν	0	As
P1	41.41	9.46	46.52	2.61
P2	35.67	9.89	51.24	3.20
P3	37.24	9.73	48.15	4.89
P4	39.45	11.09	43.06	6.41

Table S2: Elemental analysis summary from EDX of the arsenohydrogels.

^aOther elements such as potassium, iodide and phosphorous is not taken into account.

	Time / hrs					
	24	48	72	96	120	
P1	175	385	900	1610	2040	
P2	50	195	400	615	880	
P3	25	80	140	250	360	
P4	5	25	60	115	160	

Table S3: Degree of swelling $(W_s - W_0/W_0) \times 100$ for **P1-P4** in PBS (pH 7.4)

Figure S15: Swelling ratio of the arsenohydrogels derived from **P1-P4** calculated as $(W_s-W_0)/W_0 \ge 100$ where W_0 is the weight of the hydrogel after drying in the oven and W_s is the weight of the swollen hydrogel at a definite time interval (**Table S4**). Swelling was performed in GSH (5 mM).

Time / hrs					
	24	48	72	96	120
P1	200	305	495	720	950
P2	90	220	355	525	580
P3	45	50	80	110	140
P4	25	35	50	65	80

Table S4: Degree of swelling $(W_s - W_0/W_0) \times 100$ for P1-P4 in GSH (5 mM)

Figure S16: Swelling ratio of the arsenohydrogels derived from **P1-P4** calculated as $(W_s - W_0)/W_0 \ge 100$ where W_0 is the weight of the hydrogel after drying in the oven and W_s is the weight of the swollen hydrogel at a definite time interval (**Table S5**). Swelling was performed in H₂O₂ (5 mM).

Time / hrs					
	24	48	72	96	120
P1	885	1750	7230	16350	27850
P2	460	2050	6620	15000	24400
P3	215	990	5000	14900	22300
P4	170	1525	6240	11500	18500

Table S5: Degree of swelling $(W_s - W_0/W_0) \times 100$ for P1-P4 in H₂O₂ (5 mM)

Figure S17: z-Stack tomography of NIH/3T3 cells encapsulated within arsenohydrogel matrices (10 wt%) derived from (A) **P1**; (B) **P2**; (C) **P3**; (D) **P4**, imaged with Hoechst dye.

Figure S18: z-Stack tomography of PC3 cells encapsulated within arsenohydrogel matrices (10 wt%) derived from (A) **P1**; (B) **P2**; (C) **P3**; (D) **P4**, imaged with Hoechst dye.

Figure S19: Inverse test qualitatively demonstrating gelation of **P1-P4** at 2.5 wt% in the presence of *p*-arsanilic acid (3.8 wt%).