Supporting Information

Carbon-mediated synthesis of shape-controllable manganese phosphate as Nanozyme for modulation of superoxide anions in Hela cells

Xuan Cai^a, Zhenxing Wang^a, Huanhuan Zhang^a, Yufei Li^a, Kaicha Chen^a, Hongli

Zhao *^a and Minbo Lan *^{a,b}

^a Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China

^b State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China

* Corresponding authors. H. Zhao, E-mail: <u>honglizhao@ecust.edu.cn</u>, Tel: +86-21-64250557;
M. Lan, E-mail: <u>minbolan@ecust.edu.cn</u>, Tel: +86-21-64253574.

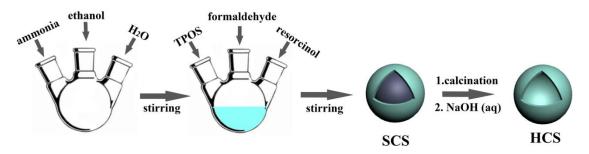


Figure S1. The synthesis process of hollow carbon sphere (HCS)

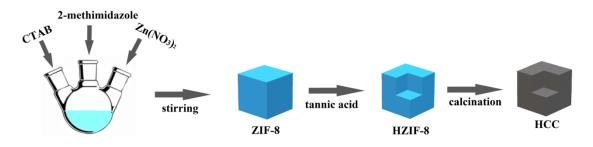
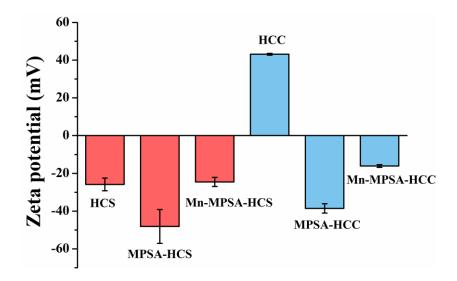



Figure S2. The synthesis process of hollow carbon cubic (HCC)

Figure S3. The variation of zeta potential during the synthesis process of Mn-MPSA-HCS and Mn-MPSA-HCC.

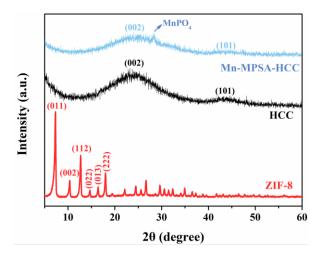
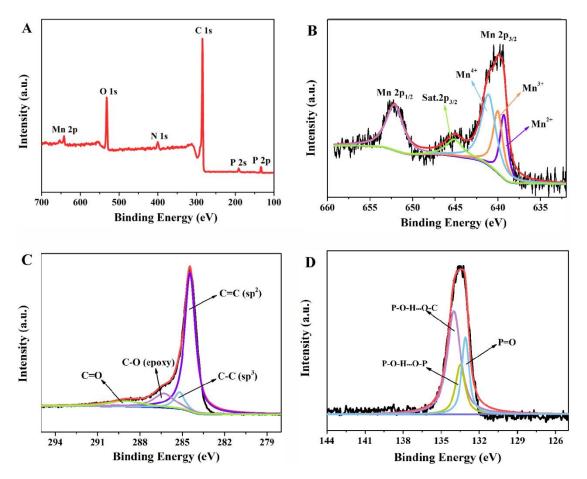
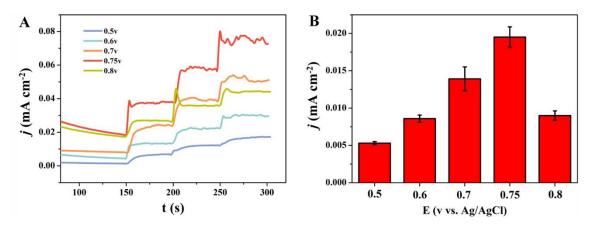




Figure S4. The XRD characterization of ZIF-8 and HCC

Figure S5. The (**A**) XPS wide range survey and (**B**) high-resolution Mn 2p spectrum of Mn-MPSA-HCS; the high resolution (**C**) C 1s and (**D**) P 2p of Mn-MPSA-HCC

Figure S6. The optimization of applied potential of Mn-MPSA-HCS/SPCE in 0.1 M PBS (pH 7.4) at the addition of 0.16 mM superoxide anions at each step

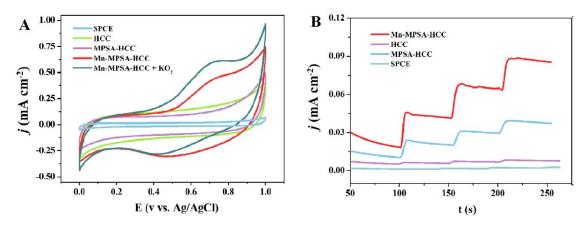
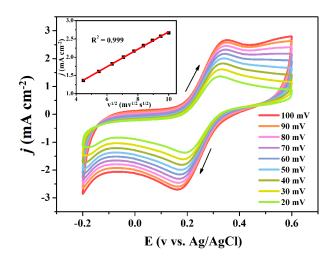



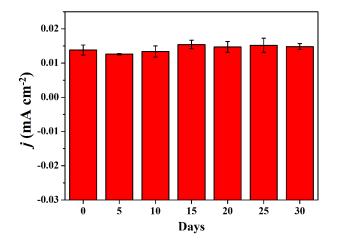
Figure S7. The (A) CV curves and (B) current responses of SPCE, HCS/SPCE, MPSA-HCS/SPCE and Mn-MPSA-HCS/SPCE

Figure S8. The CV curves of Mn-MPSA-HCS/SPCE in 5 M $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$ (contains 0.1 M KCl) at different scan rates

	Applied	Sensitivity	Linear	Limit of	
Materials	potential	(µA cm ⁻²	range	detection	Ref.
	(V)	μM^{-1})	(µM)	(µM)	
Mn-MPSA-MWCNTs	0.7	77.5	0-1817	0.127	[1]
/SPCE					
SOD/PdNPs/C _{TTF} /SP	0.2	_	_	2.0 ±0.2	[2]
CEs					
GNP/Cu-Cys	0.25	18	3.1-326	2.8	[3]
Gelatin-ZnO-SOD				1.64	[4]
Naringin-Cu	0.123	_	0.2-2.8	0.7	[5]
SOD/PMMA/PANI-A	0.3	42.5	0.5-2.4	_	[6]
u					
Mn-MPSA-HCS	0.75	224	0-1257.4	0.00125	This work
/SPCE					

Table S1. The analytical performance of various electrodes in previous researches for O_2^{-} sensing.

References


[1]. Cai X, Shi L, Sun W, Zhao H, Li H, He H, et al. A facile way to fabricate manganese phosphate self-assembled carbon networks as efficient electrochemical catalysts for real-time monitoring of superoxide anions released from HepG2 cells. Biosensors & Bioelectronics. 2018;102:171-8.

[2]. Barquero-Quiros M, Arcos-Martinez MJ. Effect of Nanoparticles on Modified Screen Printed Inhibition Superoxide Dismutase Electrodes for Aluminum. Sensors (Basel, Switzerland). 2016;16(10).
[3]. Dashtestani F, Ghourchian H, Eskandari K, Rafiee-Pour HA. A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchimica Acta. 2015;182(5-6):1045-53.

[4]. Derkus B, Emregul E, Emregul KC. Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode. Talanta. 2015;134:206-14.

[5]. Madhurantakam S, Selvaraj S, Nesakumar N, Sethuraman S, Rayappan JBB, Krishnan UM. Electrochemical enzymeless detection of superoxide employing naringin-copper decorated electrodes. Biosensors & Bioelectronics. 2014;59:134-9.

[6]. Santhosh P, Manesh KM, Lee S-H, Uthayakumar S, Gopalan AI, Lee K-P. Sensitive electrochemical detection of superoxide anion using gold nanoparticles distributed poly(methyl methacrylate)-polyaniline core-shell electrospun composite electrode. Analyst. 2011;136(8):1557-61.

Figure S9. The current responses of Mn-MPSA-HCS/SPCE toward 0.16 mM O_2^{\bullet} in a month of period