Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Supporting Information for:

Dual-readout aptasensing of antibiotic residue based on gold nanoclusters-functionalized MnO₂ nanosheets with target-induced etching reaction

Ruijin Zeng,^a Yun Tang,^b Lijia Zhang,^a Zhongbin Luo^a and Dianping Tang^{a,*}

^aKey Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China

^bGrinnell College, 1115 8th Avenue, Grinnell, Iowa 50112, United States

***CORRESPONDING AUTHOR INFORMATION**

Phone: +86-591-2286 6125; fax: +86-591-2286 6135; e-mail: dianping.tang@fzu.edu.cn (D. Tang)

S1. Partial experimental section

S1.1. Chemical and reagent

Kanamycin (Kana), chloramphenicol (CAP), amikacin (AMK), gentamicin (GEN), tobramycin (TOB) and norfloxacin (NOR) were purchased from Aladdin (Shanghai, China). Exonuclease I (Exo I) and all the oligonucleotides were synthesized and purified by Sango Biotech. Co., Ltd. (Shanghai, China). Table S1 provides the sequences of all DNA used. HAuCl₄, the carboxylated magnetic bead (MB; 100 nm in diameter), streptavidin-alkaline phosphatase conjugate (SA-ALP) and Mn(NO₃)₂ were purchased from Sinopharm Chem. Re. Co., Ltd. (Shanghai, China). *N*-(3-dimethylaminopropyl)-*N'*-ethyl-carbodiimide hydrochloride (EDC), bovine serum albumin (BSA; VetecTM, reagent grade, \geq 98%) and *N*-hydroxysuccinimide (NHS) were gotten from Sigma (St. Louis, USA). All other chemicals were of analytical grade and used as received. Ultrapure water obtained from a Millipore water purification system at 18.2 M Ω ·cm⁻¹ (Milli-Q, Millipore) was used throughout this work. Phosphate buffer solution (PBS) with different pH values was prepared by using 10 mM phosphate-buffered saline and 0.1 M KCl.

Name	Sequence (5'- 3')
Aptamer for Kana (Apt)	TGGGGGTTGAGGCTAAGCCGA
Complementary DNA (C-DNA)	TCGGCTTAGCCTCAACCCCCAGGGGTTTTATGCAAAACCCC
Hairpin DNA1 (HP1)	NH2-(T)10-TGGGGGGTTGAGGAAA AACCTCAACC
Auxiliary DNA probe	CACCCGACTTAGGTTGAGGTTTTTCTAAGCCGACCCACACCCGA
Biotin-hairpin H1 (Bio-H1)	Biotin-CACCCGACTTATCGGGTGTGGG
Biotin-hairpin H2 (Bio-H2)	TAAGTCGGGTGCCCACACCCGA-Biotin

 Table S1 DNA sequences used in this study

Note: Before reaction, all of hairpin probe were annealed at 95 °C for 5 min and slowly cooled down to room temperature.

Table S2 Comparison of different assay methods for Kana determination on the analytical properties

Methods	Linear range	Detection limit	Analysis time	Ref.
Photoelectrochemistry	0.2 – 450 nM	50 pM	43 h	[1]
Luminescence	$0.2-150\ \mu M$	143 nM	2 h	[2]
Colorimetric assay	0.1 – 100 nM	0.1 nM	3 h	[3]
Fluorescence resonance energy transfer	1.0 – 50 nM	0.4 nM	5 h	[4]
Lateral flow test strip	1.0 – 30 nM	77.8 pM	30 h	[5]
Electrochemical aptasensor	2.1 – 128.7 nM	188.8 pM	8 h	[6]
Fluorescence aptasensor	$0.002-5 \ nM$	1.2 pM	5 h	This work

References

- 1. X. Liu, P. Liu, Y. Tang, L. Yang, L. Li, Z. Qi, D. Li and D. Wong, Biosens. Bioelectron., 2018, 112, 193-201.
- 2. K. Leung, H. He, D. Chan, W. Fu, C. Leung and D. Ma, Sens. Actuators B, 2013, 177, 487-492.
- 3. C. Wang, D. Chen, Q. Wang and R. Tan, Biosens. Bioelectron., 2017, 91, 262-267.
- 4. Q. Liao, B. Wei and L. Luo, Microchim. Acta, 2017, 184, 627-632.
- 5. J. Liu, J. Zeng, Y. Tian and N. Zhou, Analyst, 2018, 143, 182-189.
- 6. A. Sharma, G. Istamboulie, A. Hayat, G. Catanante, S. Bhand and J. Marty, Sens. Actuators B, 2017, 245, 507-515.