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S1. Characterization of materials and membranes
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Fig. S1 (a) Colors of the membranes; (b) Raman spectra of the multi-layer graphene 

nanosheets; (c) TEM measurement of the graphene nanosheets; (d）XRD patterns of 

graphene and elastic membranes; (e) SEM measurement of the pristine membranes; (f) 

surface topography images of the prepared surfaces measured by the AFM; (g) 

measurement of elements in the elastic membranes by EDS; (h) Static contact angle of 

the specimens; (i) Dynamic contact angle of the specimens.



Table S1. The weight percentage (wt %) of atoms in the membranes by the EDS.

Element (wt%) PSR (0 wt%) GSR (0.16 wt%) GSR (0.36 wt%) GSR (0.64 wt%)

C 43.73 61.81 67 74.18

O 29.13 24.28 27.71 23.95

Si 27.14 13.91 5.29 1.87

S2. Flowing water system

Fig. S2 Schematic diagram of the flowing water system.

Nomenclature Value
ρ water density 1.024 g/cm3 (20℃, salinity 35‰)

V the rate of water flow 0.2－0.5 m/s

dH hydraulic diameter of rectangular tube 
(full filled)

μ dynamic viscosity 0.00108 Ns/m2（20℃, salinity 
35‰）

a, b width and height of the section of the 
tube in test area

a = 5cm and b = 3cm

The Reynolds number (Re) is an important dimensionless quantity in fluid mechanics 



used to help predict flow patterns in different fluid flow situation. Re is determined by

Re = 

𝜌𝑉𝑑𝐻

𝜇

dH = 

2𝑎𝑏
𝑎 + 𝑏

The results show Re in the range of 0.71×104－1.78×104 which is bigger than 4000, 
so that it is turbulent flow in test area, namely, its`s a turbulence generator.

S3. Calculation method of the surface energy.
The correlation of contact angle and surface energy is given by1

cosθ = -1 + 2  [1-β(γL - γS)]

𝛾𝑆

𝛾𝐿

where θ stands for contact angle, γS and γL represents surface energy of solid and 

liquid, respectively. β is a constant with the value 1.057×10-4 m2/mJ. 

Surface energy of the liquid is given by the following table:

Liquid γL (mJ●m-2)

DI Water 72.8

According the equation and the table above, it easy to get surface energy of the four 

membranes (Fig. S3b).
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Fig. S3 (a) Water contact angle of the rigid PS sheet and PSR/GSR membranes for 

various graphene contents at 20℃. (b) Surface energy of the rigid PS sheet and 



PSR/GSR membranes for various graphene contents at 20℃. (Error bar: standard 

deviation, n=3)

S4. Theory for the laser-displacement sensor in underwater measurement

Fig. S4 Displacement of the surface from A to B.

In Fig. S4, left: The initial position is A, incident angle is α, and refraction angle is 

β. According to the geometrical relationship, the virtual image position is A`, hA is the 

distance between A and water surface, and hA` is the distance between A` and water 

surface; right: The position is B, incident angle is α`, and refraction angle is β`. 

According to the geometrical relationship, the virtual image position is B`. The distance 

between the sender and receiver of the sensor is a. Refractive index is n. We can get 

the following relationships:

n=                                (S4.1)

𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛽

hA=                               (S4.2)

𝑎
𝑡𝑎𝑛𝛽

hA`=                              (S4.3)

𝑎
𝑡𝑎𝑛𝛼

When the surface displacement occurred, A reached B with the displacement δh. 

Similarly, we can get the following equations

hB=                               (S4.4)

𝑎
𝑡𝑎𝑛𝛽 `



hB`=                               (S4.5)

𝑎
𝑡𝑎𝑛𝛼`

The actual displacement: δh = hB - hA = a ( )                   (S4.6)

1
𝑡𝑎𝑛𝛽 `

‒
1

𝑡𝑎𝑛𝛽
 

The virtual image displacement: δH = hB` - hA` = a ( )             (S4.7)

1
𝑡𝑎𝑛𝛼`

‒
1

𝑡𝑎𝑛𝛼
 

By combining equations(S4.1) and (S4.6, S4.7), we can get

δH =  δh                              (S4.8)

1
𝑛

Hence, the measurement results (δH) multiply by n equal the actual displacement (δh).

S5. Simulations in ANSYS

Two simplified models were established in the ANSYS Mechanical APDL software 

package. The first one (Fig. S5a) shows a fouler that was glued on the elastic surface 

with no gap in attachment area. The second one (Fig. S5b) shows a fouler that was 

glued on elastic surface with some flaws in attachment area. Elastic modulus of the 

elastic surface E=1 MPa. Elastic modulus of the fouler was listed in the following 

table2.

Fouler Elastic modulus E

Cell3-5 0.1-100 kPa

Alga6, 7 2-10 MPa

Barnacle8 0.2-5 MPa

In our models, we assumed the fouler was a cell, therefore elastic modulus of the 

fouler E=100 kPa was used in the simulations. The two elastic surfaces were 10 m long, 

and 4 m wide, with a thickness of 2 m, and the fouler with the size of 2 m long and 4 m 

wide, with a thickness of 0.5 m. Pressure F=100 N was applied to the edge of the 

membrane. After the models were meshed, they were solved.



Fig. S5 (a) A fouler was glued on the elastic surface. (b) A fouler was glued on the 

elastic surface with some flaws in attachment area.
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