Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting information

Structural Exploration of Hydropbobic Core in Polycationic Mice lles for Improving siRNA Delivery Efficiency and Cell Viability

Wenjun Huang \pm^a , , Xiaoxia Wang \pm^b , Changrong Wang a , Lili Du b , Jianhua Zhang a , Liandong Den g a , Huiqing Cao b , Anjie Dong *a,c

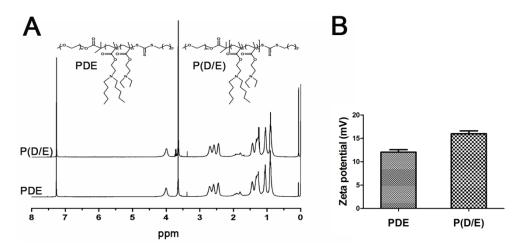


Fig. S1. (A) ¹H NMR spectra of PDE and P(D/E). (B) Zeta potential values of two PDE and P(D/E) measured by DLS.

^a Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.

b Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China.

^c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.

^{*}Corresponding Author: Anjie Dong, E-mail: ajdong@tju.edu.cn

[±] Dual contributors

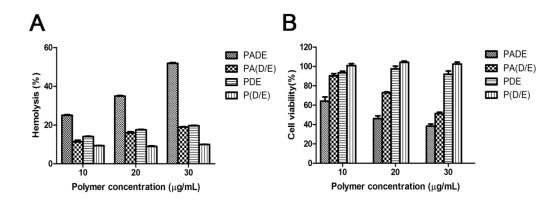


Fig.S2. (A) The hemolysis assay of PADE, PA(D/E), PDE and P(D/E) detected in different concentrations. (B) The cell viability of HepG2 cells detected after transfected for 24h.