| 1  | Supplementary document                                                                                                                                    |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2  | A Muscle Mimetic Polyelectrolyte-Nanoclay Organic-Inorganic Hybrid Hydrogel: Its Self-                                                                    |  |
| 3  | healing, Shape-memory and Actuation Properties                                                                                                            |  |
| 4  |                                                                                                                                                           |  |
| 5  | Sovan Lal Banerjee <sup>a</sup> , Thomas Swift <sup>b</sup> , Richard Hoskins, <sup>b</sup> Stephen Rimmer <sup>b*</sup> , Nikhil K. Singha <sup>a*</sup> |  |
| 6  |                                                                                                                                                           |  |
| 7  | <sup>a</sup> Rubber Technology Centre, Indian Institute of Technology, Kharagpur, India.                                                                  |  |
| 8  |                                                                                                                                                           |  |
| 9  | <sup>b</sup> School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire BD7                                                    |  |
| 10 | 1DP, U.K.                                                                                                                                                 |  |
| 11 | *Email - nks@rtc.iitkgp.ernet.in, nks88888@yahoo.com                                                                                                      |  |
| 12 |                                                                                                                                                           |  |
| 13 | FTIR and XRD Analysis                                                                                                                                     |  |
| 14 |                                                                                                                                                           |  |
| 15 | <b>Figure S1(a)</b> shows the FTIR spectra of soluble starch, starch- <i>g</i> -PMTAC, pure hydrogel                                                      |  |
| 16 | and composite hydrogel. The spectrum for starch, contained a broad peak near 3416 cm <sup>-1</sup> was                                                    |  |
| 17 | attributed to the existence of $-OH$ stretching. The absorption band for $-CH_2$ stretching vibration                                                     |  |
| 18 | was observed near 2927 cm <sup>-1</sup> . A vibration band near 1163 cm <sup>-1</sup> was due to the presence of C-O-C                                    |  |
| 19 | bond. In the case of the as-prepared hydrogel (PSAS <sub>50</sub> $C_0$ ), the vibration peaks at 1394 cm <sup>-1</sup> , and                             |  |
| 20 | 1731 cm <sup>-1</sup> were due to the presence of in-plane deformations of $-CH$ bond and $>C=O$ stretching.                                              |  |
| 21 | The absorption bands at 1491 cm <sup>-1</sup> and 942 cm <sup>-1</sup> were due to the bending and stretching vibration                                   |  |
| 22 | of the quaternary ammonium group respectively. The existence of the peak near 1560 cm <sup>-1</sup>                                                       |  |
| 23 | signifies the presence of -COO <sup>-</sup> of poly(sodium acrylate). This indicated the probability of the                                               |  |
| 24 | formation of the ionic bond between $-COO^{-}$ and $-N(CH_3)_3^+$ through electrostatic interactions <sup>1</sup> . In                                    |  |
| 25 | the case of the composite hydrogel, characteristic transmittance peaks for CTAB modified MMT                                                              |  |
| 26 | appeared at 3630 cm <sup>-1</sup> and 3395 cm <sup>-1</sup> (presence of free –OH and bound –OH of OMMT), 1478                                            |  |
| 27 | cm <sup>-1</sup> (-CH <sub>3</sub> bending vibration of the quaternary ammonium ion [RN(CH <sub>3</sub> ) <sub>3</sub> ] <sup>+</sup> of CTAB)            |  |
| 28 | respectively.                                                                                                                                             |  |



Figure S1. (a) FTIR analysis, (b) & (c) XRD analysis.

## **33** Determination of the hydrodynamic radii from the DOSY NMR analysis

**Equation S1:** Equations used to determine hydrodynamic radii of polymers:

$$D = \frac{k_B T}{6\pi \eta r}$$

$$R_H = \frac{k_B T}{6\pi\eta D}$$

38 Where, D = Diffusion coefficient; T = absolute temperature; 
$$\eta$$
 = viscosity of the solvent; R<sub>H</sub> =

 $D_1\eta_1 = D_2\eta_2$ 

39 hydrodynamic radius;  $k_B = Boltzmann constant$ .

- 40 Diffusion of D<sub>2</sub>O at 298 K =  $1.93 \times 10^{-9} \text{ m}^2 \text{ S}^{-1}$ .
- 41 Diffusion of Soluble Starch at 298 K =  $1.99 \times 10^{-11} \text{ m}^2 \text{ S}^{-1}$ .
- 42 Diffusion of D<sub>2</sub>O (solvent) with Soluble Starch at 298 K =  $2.04 \times 10^{-9} \text{ m}^2 \text{ S}^{-1}$ .
- 43 Diffusion of Starch-PMTAC at 298 K =  $4.89 \times 10^{-12} \text{ m}^2 \text{ S}^{-1}$ .
- 44 Diffusion of D<sub>2</sub>O (solvent) with Starch-PMTAC at 298 K =  $1.86 \times 10^{-9} \text{ m}^2 \text{ S}^{-1}$ .
- 45  $R_{Hp}$  soluble starch at 298 K = 10.6 nm
- 46  $R_{Hp}$  Starch-PMTAC at 298 K = 39.2 nm

47



49

50 Figure S2: (a) & (b) Comparison of the fracture stress with the variation in the self-healing time

51 and content of cationic starch respectively; (c) self-healing study through rheological analysis.



Figure S3: Self-healing study of the hydrogel via 'scratch & heal" method analysed through
optical microscopy- (a) & (b) anionic hydrogel (PSAS<sub>0</sub>C<sub>0</sub>) before and after buffer (pH 7.4)
treatment; (c) & (d) composite hydrogel (PSAS<sub>50</sub>C<sub>5</sub>) before and after buffer (pH 7.4) treatment.



- **Figure S4:** Shape recovery study after the application of (**a**) torsional force and (**b**) bending force.
- **Table S1:** Repeatability study of the water based shape memory effect

| No of cycle | Shape fixity (R <sub>f</sub> ) (%) | Shape recovery (Rr) (%) |
|-------------|------------------------------------|-------------------------|
| 1           | >95                                | 90                      |
| 2           | >95                                | 90                      |
| 3           | >93                                | 88                      |



- **Figure S5:** Salt induced actuation in the control hydrogel system (PSAS<sub>0</sub>C<sub>0</sub>) (anionic hydrogel)
- 64 having no cationic segment.



65

**Figure S6:** Acid induced actuation in the control hydrogel system (PSAS<sub>0</sub>C<sub>0</sub>) (anionic hydrogel)

67 having no cationic segment.



69 Figure S7: Image of the custom built voltameter and orientation of the polyelectrolyte hydrogel

strip at (a)  $t = 0 \min$ , (b)  $2 \min$ , (c)  $5 \min$  of current flow and (d) after the withdrawal of the current.





72 Figure S8: (a) Schematic representation of the actuation in the polyelectrolyte anionic hydrogel

- 73 (PSAS $_0C_0$ ) system in the presence of an electrical field and (**b**) behaviour of the anionic hydrogel
- 74  $(PSAS_0C_0)$  system with the time of electric field application.

## 75 **References**

- 1. Y. Huang, J. Lu and C. Xiao, Polymer degradation and stability, 2007, **92**, 1072-1081.
- 77