Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Figure S1. ¹H NMR spectrum of catechol-bearing 4-arm poly(ethylene glycol) ([PEG-Cat]₄).

Figure S2. (a) Synthesis scheme of [PEG-Cat]₄. (b) FTIR spectra of [PEG-NHS]₄ and [PEG-Cat]₄.

Figure S3. (a) UV-Vis spectra of solutions of 4-arm PEG-Catechol in water for select concentrations. (b) The calibration curve for catechol absorption at $\lambda = 280$ nm.

M ^{z+}	Net Reaction ^a	[M ^{z+}] ^d (mM)
Fe ³⁺	$2Fe^{3+} + QH_2 \rightarrow 2Fe^{2+} + Q + 2H^+$	64.0
VO ₃ ⁻	$2VO_3^{-} + 8H^+ + QH_2 \rightarrow 2VO^{2+} + Q + 4H_2O$	64.0
Ag^+	$2Ag^+ + QH_2 \rightarrow 2Ag + Q + 2H^+$	64.0
AuCl ₄ ⁻	$2[\operatorname{AuCl}_4^-] + 3\operatorname{QH}_2 \rightarrow 2\operatorname{Au} + 3\operatorname{Q} + 6\operatorname{HCl} + 2\operatorname{Cl}^-$	21.3
Cu ^{2+ b}	$2 \operatorname{Cu}^{2+} + \operatorname{QH}_2 \rightarrow 2\operatorname{Cu}^+ + \operatorname{Q} + 2\operatorname{H}^+$	64.0
Cu ^{2+ c}	$Cu^{2+} + QH_2 \rightarrow Cu + Q + 2H^+$	32.0
Al ³⁺	$2Al^{3+} + 3QH_2 \rightarrow 2Al + 3Q + 6H^+$	21.3
VO ²⁺	$2VO^{2+} + 2H^+ + QH_2 \rightarrow 2V^{3+} + 2H_2O + Q$	64.0

Table S1. Formulation of hydrogel precursors and associated redox reactions.

^aNote: QH₂ – fully reduced catechol; Q – fully oxidized *o*-quinone. ^bReduction of Cu²⁺ to Cu⁺ ^cReduction of Cu²⁺ to Cu⁰

^dConcentration of [PEG-Cat]₄ held constant at 8 mM for all reactions.

Figure S4. UV-vis spectra of dilute solutions of precursors as a function with time for the following compositions: (a) $[PEG-Cat]_4+Fe^{3+}$; (b) $[PEG-Cat]_4+V^{5+}$; (c) $[PEG-Cat]_4+Ag^+$; (d) $[PEG-Cat]_4+Au^{3+}$; (e,f) $[PEG-Cat]_4+Cu^{2+}$; (g) $[PEG-Cat]_4+V^{4+}$; (h) $[PEG-Cat]_4+Al^{3+}$.

Figure S5. $[PEG-Cat]_4+Au^{3+}$ samples prepared for UV-vis spectroscopy imaged under (a) transmitted and (b) reflective light.

Figure S6. Peak deconvolution and fitting with baseline correction with UV-vis spectrum of $[PEG-Cat]_4+Au^{3+}$.