Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting information

Development of biodegradable polyesters based on hydroxylated coumarin

initiator towards fluorescent visible paclitaxel-loaded microspheres

Yufei Bian^a, Zhiyong Wei^{a*}, Zefeng Wang^b, Zhu Tu^a, Liuchun Zheng^{c*},

Wenhuan Wang^a, Xuefei Leng^a, Yang Li^{a*}

^a State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of

Chemical Engineering, Dalian University of Technology, Dalian 116024, China

^b Department of Chemistry, Lishui University, Lishui 323000, China

^c Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China

* Corresponding authors, *E-mail addresses:* zywei@dlut.edu.cn (Z. Wei), hubeizlc@iccas.ac.cn (L. Zheng), and liyang@dlut.edu.cn (Y. Li)

Figure S1. ¹H NMR spectra of HOEC and 7-OH-COU

Figure S2 ¹H NMR spectra of fluorescent polyesters initiated directly by hydroxylated coumarin with different ratio

of monomer and OH

(a) PLLA-COU (b) PCL-COU (c) PVL-COU (d) PTMC-COU

Figure S3. ¹H NMR spectra of COU-OH and fluorescent polyesters initiated directly by hydroxylated

coumarin

of monomer and OH		
Sample	Tg^a	OP^b
	(°C)	(%)
PLLA-TBD	48.98	83.7
PLLA-COU-20	52.5	90.1
PLLA-COU-50	53.65	82.9
PLLA-COU-100	54.76	83.5
PLLA-COU-200	53.36	85.0
PLLA-COU-300	55.24	84.6
Sample	Tc^a	T <i>m</i> ^a
	(°C)	(°C)
PCL-COU-30	29.1	53.6
PCL-COU-50	29.8	54.5
PCL-COU-100	31.3	56.7
PCL-COU-200	31.0	58.3
PVL-COU-30	31.09	54.86
PVL-COU-50	31.49	56.41
PVL-COU-100	30.78	57.98
PVL-COU-200	30.43	58.03

Table S1 Thermal properties of fluorescent polyesters initiated directly by hydroxylated coumarin with different ratio

Note: ^{*a*} measured by DSC, heating rate is 10°C/min.

^{*b*} measured by polarimeter with CHCl₃ as solvent, C=10mg/ml, $[\alpha]_{(PLLA)}$ =-156°.

$$OP = \frac{[\alpha]}{[\alpha]_{(PLLA)}} \times 100\%$$

Figure S4 DSC curves of fluorescent polyesters with different ratio of monomer and hydroxylated coumarin (a) PLLA-COU (b) PCL-COU (c) PVL-COU

Figure S5 UV and FL curves of COU-OH in CHCl3 and stander curves

The standard curve was measured by UV-Vis spectrometer in CHCl₃. The standard curve of hydroxylated coumarin is as follow:

 $A = 23501 \times C + 0.01 \qquad R^2 = 0.9999$

Figure S6 UV and FL curves of different concentration fluorescent polyesters initiated directly by hydroxylated coumarin (dash is UV and solid is FL curves) (a) PLLA-COU (b) PCL-COU (c) PVL-COU (d) PTMC-COU