Electronic Supplementary Information for

Rapid-response, reversible and flexible humidity sensing platform using a hydrophobic and porous substrate

Jin Wu,^{a*} Zixuan Wu,^a Kai Tao,^b Chuan Liu^a, Bo-Ru Yang^a, Xi Xie^a, Xing Lu^{a*}

^aState Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275,

China

^bThe Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, China.

*To whom correspondence should be addressed. E-mail: <u>wujin8@mail.sysu.edu.cn</u> or

eexlu@connect.ust.hk

Figure S1. SEM images of the LCP substrate with increased magnification from (a) to

(c).

Figure S2. Energy-dispersive X-ray (EDX) spectra of the graphene oxide (GO).

Figure S3. EDX spectra of the reduced graphene oxide (RGO). The Au signal results from a thin layer conductive Au coating on RGO surface used for SEM characterization.

Figure S4. EDX spectra of carbon nanocoils (CNCs). The signal of silicon is originated from the silicon substrate.

Figure S5. Dynamic response of the GO/LCP sensor to the low relative humidity (RH) of 4%.

Figure S6. Plot of the standard deviation of the GO/LCP sensor versus RH for the detection of each RH with repeated five cycles.

Figure S7. Comparison of the quantitative responses of the GO/CLP to the deep mouth breath and shallow nose breath.

Figure S8. Analyses of the response and recovery time of the CNC/LCP sensor from the dynamic response curve to 8% RH.