Supplementary Information

A simple selenamorpholine-based fluorescent probe for targeting lysosome and visualizing hydrogen peroxide in living cells and zebrafishs

Chao Xu, Ying Qian*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

*E-mail: <u>yingqian@seu.edu.cn</u>

Index

Scheme S1 Synthetic route of fluorescent probe BODIPY-Se

Table S1 Properties of the reported lysosome-targeted fluorescent probes for H₂O₂.

Fig. S1 Absorption spectra of BODIPY-Se at different concentrations of H₂O₂ in EtOH-PBS solution.

Fig. S2 Fluorescence responses of probe toward H_2O_2 and other substances in EtOH-PBS solution.

Fig. S3 The molecular orbitals for the ground states of BODIPY-Se, BODIPY-SeH, BODIPY-SeOH based on DFT (B3LYP/6-31G*) calculations..

Fig. S4 Cytotoxicity of different concentrations of BODIPY-Se to HepG2 cells by a standard MTS assay.

Fig. S5 The intracellular fluorescence standard curve versus hydrogen concentration.

Fig. S6 Fluorescence images of MCF-7 cells treated with $2\,\mu M$ BODIPY-Se and different concentrations of vitamin C.

Fig. S7 Confocal fluorescence images in zebrafishs incubated with probe BODIPY-Se and subsequently treated with H_2O_2 for different time.

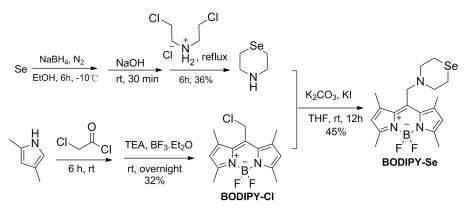

Fig. S8 ¹H NMR spectrum (CDCl₃, 300 MHz) of BODIPY-Cl.

Fig. S9 ¹H NMR spectrum (CDCl₃, 300 MHz) of BODIPY-Se.

Fig. S10¹³C NMR spectrum (CDCl₃, 75 MHz) of BODIPY-Se.

Fig. S11 MS spectrum of BODIPY-Se.

Fig. S12 ES-MS spectrum of BODIPY-Se in the presence of H₂O₂.

Scheme S1. Synthetic route of fluorescent probe BODIPY-Se.

Probes	Signaling mode	λ _{em-} max	LOD	Response time	Application	References
	Turn-on	676	0.21 μM	25 min	Monitoring H ₂ O ₂ in living cells	Anal. Methods, 2018, 10, 3754–3758.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Turn-on	606	0.06 μM	9 min	Monitoring H ₂ O ₂ in living cells	Analyst, 2017, 142, 4522– 4528
ин-С-С-он	Turn-on	537	0.22 μM	60 min	Detecting endogenous /exogenous H2O2; Tissue-imaging Monitoring H2O2 in living nematodes	Chem. Commun., 2017, 53, 37013704
	Turn-on	584	0.23 μΜ	10 min	Detecting endogenous /exogenous H2O2	Anal. Chem. 2016, 88, 5865– 5870
+°B-C-N_0	TP Turn-on	550	1.21 μM	160 seconds	Monitoring H ₂ O ₂ in living cells; Detecting endogenous /exogenous H ₂ O ₂ .	Biosensors and Bioelectronics, 2016, 79, 79, 237–243.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Turn-on	528		30 min	Detecting endogenous /exogenous H2O2.	Scientific reports, 2015, 5, 8488.
This work	Turn-on	504	0.13 μM	5 min	Monitoring H2O2 in living cells; Detecting endogenous /exogenous H2O2; Monitoring H2O2 in living zebrafishs.	

Table S1. Properties of the reported lysosome-targeted fluorescent probes for H₂O₂.

Quantum yield

The quantum yield (Φ_F) was calculated according to the equation: $\Phi_F = \Phi_{ref} (A_{ref}S_{sample}/A_{sample}S_{ref})$ (n_{sample}/n_{ref}). Where A is the absorbance at the excitation wavelength, S is the area under the corrected emission curve, and n is the refractive index of the solvents used. Subscripts "Sample" and "ref" refer to the standard and to the unknown, respectively.

Cell culture

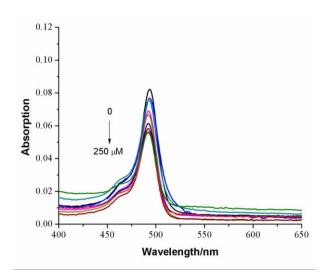
Cells were cultured in DMEM (Dulbecco's modified Eagle's medium) supplemented with 10% FBS (fetal bovine serum) in an atmosphere of 5% CO_2 and 95% air at 37 °C.

Imaging of H₂O₂ in living cells

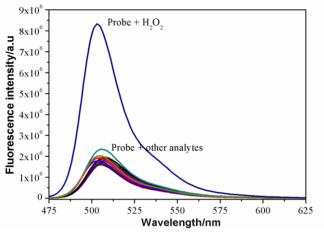
a) Imaging of exogenous H₂O₂ in MCF-7 cells

The MCF-7 cells were plated on 6-well plates and allowed to adhere for 24 h. The cells were washed with PBS (pH=7.4) buffer three times. Subsequently, incubating with the probe BODIPY-Se (2 μ M) (containing 0.1 % DMSO as a co-solvent) for another 30 min at 37 °C, the MCF-7 cells were rinsed with PBS three times, and the cells were incubated with (0, 10, 30 and 50 μ M) H₂O₂ for 30 min at 37 °C, and then washed with PBS three times, and the fluorescence images were acquired through confocal microscopy fluorescence imaging.

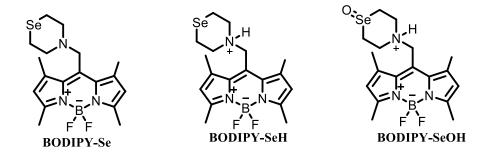
b) Imaging of endogenous H₂O₂ in MCF-7 cells


The MCF-7 cells were plated on 6-well plates and allowed to adhere for 24 h and then PMA treated for 30 min. The cells were washed with PBS (pH=7.4) buffer. Subsequently, incubating with probe BODIPY-Se (2 μ M) (containing 0.1 % DMSO as a co-solvent) for another 30 min at 37 °C, and then washed with PBS three times, and the fluorescence images were acquired through confocal microscopy fluorescence imaging.

c) Imaging of MCF-7 cells under stimulus of ascorbic acid


The MCF-7 cells were plated on 6-well plates and allowed to adhere for 24 h and then different concentrations of VC (0 mM, 0.5 mM, 0.7 mM and 1.0 mM) for 24 h. The cells were washed with PBS (pH=7.4) buffer. Subsequently, incubating with probe BODIPY-Se (2 μ M) (containing 0.1 % DMSO as a co-solvent) for another 30 min at 37 °C, and then washed with PBS three times, and the fluorescence images were acquired through confocal microscopy fluorescence imaging.

Cells cytotoxicity assay


The (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) MTT assay was used to test the cytotoxicity of probe to HepG 2 cells. Cells were planted in 36-well flat-bottomed plates and maintained at 37 °C under 5% CO₂ atmosphere. After 24 h, different concentration probes were incubated with HepG2 cells for 3 h in fresh medium, respectively. Then, 10 μ L of MTT solution (10 mg/ml, PBS) was added into each well after cells were rinsed with cold phosphate buffered saline (PBS, pH 7.40) 5 times and further incubated for 24 h. Afterwards, the remaining MTT solution was removed from wells, and 150 μ L of DMSO was added into each well to dissolve the intracellular blue-violet formazan crystals. The absorbance of the solution is observed at 490 nm via a microplate reader.

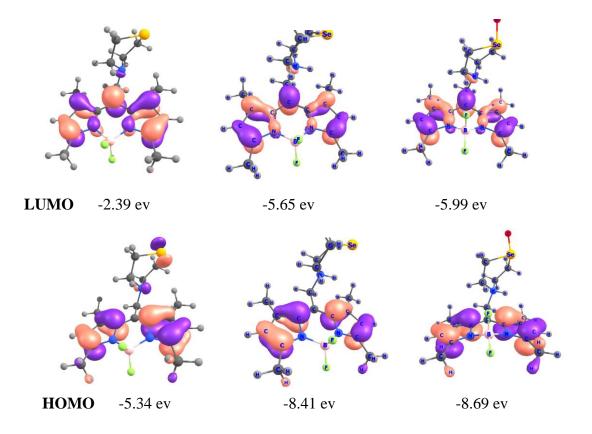


Fig. S1 Absorption spectra of BODIPY-Se at different concentrations of H_2O_2 in EtOH-PBS solution (v/v, 1/1, pH=5.0). [H₂O₂]= 0-250 μ M.

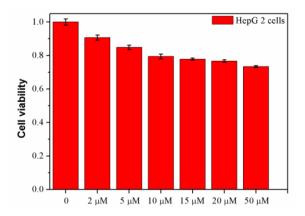


Fig. S2 Fluorescence responses of probe (10 μ M) toward H₂O₂ and other substances in EtOH-PBS solution (v/v, 1/1, pH=5.0) for 30 min at room temperature. (0) Probe only. (1-5) Fe³⁺, Hg²⁺, Cr³⁺, Mg²⁺, Cu²⁺ (500 μ M for each). (6-10) GSH, Cys, Hcy, SO₃²⁻, S²⁻ (500 μ M for each). (11-20) NO₂⁻, NO₃⁻, NO, TBO⁻, TBOH, ¹O₂, ONOO⁻, ClO⁻, OH⁻, H₂O₂ (200 μ M for each). λ_{ex} = 460 nm.

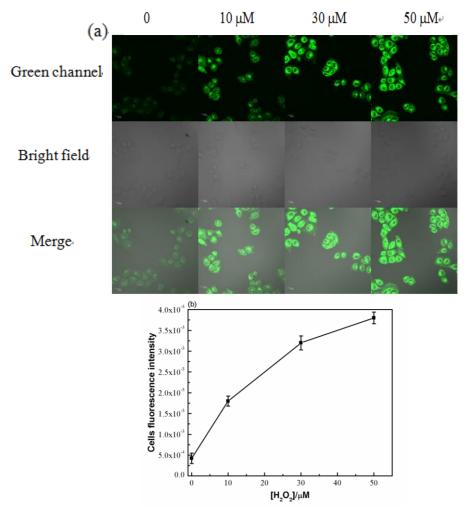


Fig. S3 The molecular orbitals for the ground states of BODIPY-Se, BODIPY-SeH, BODIPY-SeOH based on DFT (B3LYP/6-31G*) calculations.

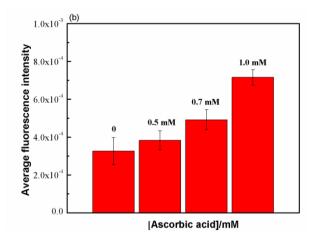


Fig. S4 Cytotoxicity of different concentrations of BODIPY-Se to HepG 2 cells by a standard MTS assay, the experiment was repeated five times and the data are shown as mean (\pm S.D.).

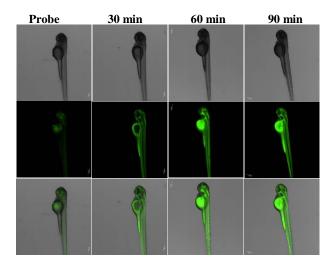


Fig. S5 (a) Fluorescence images of HepG 2 cells treated with $2 \mu M$ BODIPY-Se and then incubated with PBS solution, 10 μM , 30 μM , and 50 μM H₂O₂. Fluorescence intensities were collected at 490–530 nm in green channel. (b) Average fluorescence intensities of images under different concentrations of H₂O₂ in green channels.

Fig. S6 (a) Fluorescence images of MCF-7 cells treated with $2 \mu M$ BODIPY-Se and then incubated with different concentrations of vitamin C (0 mM, 0.5 mM, 0.7 mM and 1.0 mM). Fluorescence intensities were collected at 490–530 nm in green channel. (b) Average fluorescence intensities of images under different concentrations of vitamin C in green channels.

Fig. S7 Confocal fluorescence images in zebrafishs incubated with probe BODIPY-Se and subsequently treated with 10 μ M H₂O₂ for different time: 30 min, 60 min, 90 min. Top: Bright field. Middle: Fluorescence imagines of zebrafishs in Green channel. Bottom: Merged imagines between fluorescence imagines and bright field. Scar bar: 200 μ m. Confocal image from green channel ($\lambda_{ex} = 488 \text{ nm}, \lambda_{em} = 500-600 \text{ nm}$).

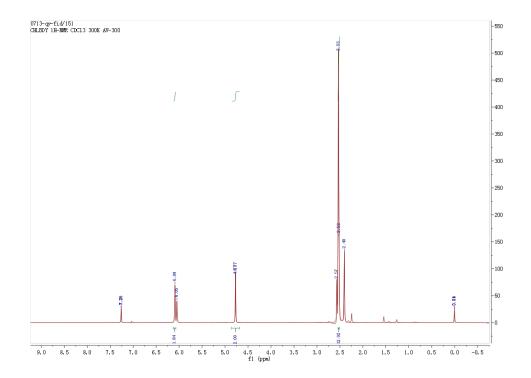


Fig. S8 ¹H NMR spectrum (CDCl₃, 300 MHz) of BODIPY-Cl

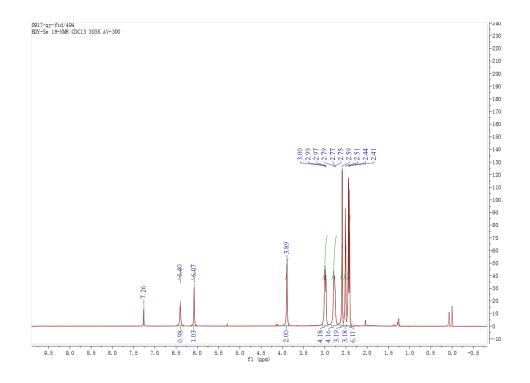


Fig. S9 ¹H NMR spectrum (CDCl₃, 300 MHz) of BODIPY-Se

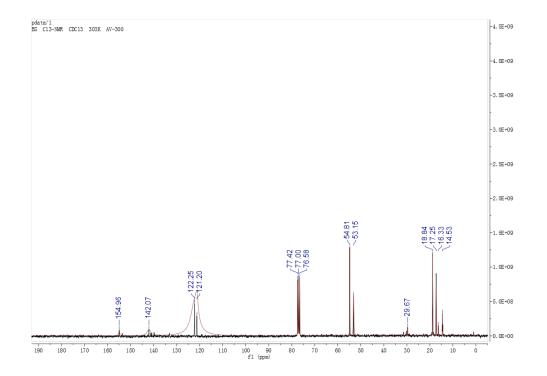


Fig. S10 ¹³C NMR spectrum (CDCl₃, 75 MHz) of BODIPY-Se

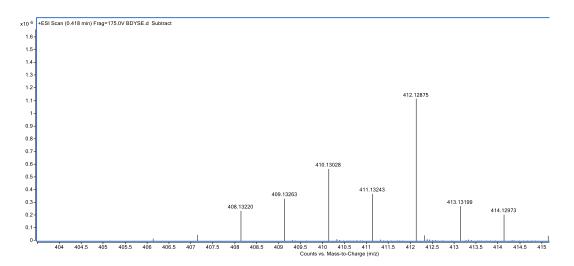


Fig. S11 MS spectrum of BODIPY-Se

Fig. S12 ES-MS spectrum of BODIPY-Se in the presence of $\mathrm{H_{2}O_{2}}$