

1

Electronic Supplementary Material (ESI) for

2

Liposomal Curcumol Nanocomposite for Magnetic Resonance

3

Imaging and Endoplasmic Reticulum Stress Mediated

4

Chemotherapy of Human Primary Ovarian Cancer

5

Jing Wang ^{a, b, 1}, Yonghong Song ^{c, 1}, Mingxun Zhang ^{d, 1}, Zhensheng Wu ^d, Yun-Jun

6

Xu ^e, Jun Lin ^e, Daishun Ling ^f, Youjing Sheng ^d, Yang Lu ^{c, *}, Qiang Wu ^{a, d, **}

7

8

1 **Additional Materials and Methods**

2 **Cell viability assay**

3 SKOV₃ cells and hPOCCs were seeded into 96-well plates in sextuplicate and incubated
4 with LC at different concentrations (0, 15, 30, 45, 60, 75 and 90 μ g/mL) for 24h,
5 respectively. According to the IC₅₀ of LC, SKOV₃ cells were treated with 30 μ g/mL LC
6 for 12h, 24h, or 48h, while hPOCCs were treated with 60 μ g/mL LC. Curcumol powder
7 was directly added into culture medium at the same concentrations for comparison. Cell
8 viability was measured by standard MTT method. To assess general toxicity of this
9 liposomal composite, hNOECs were treated with LC (0, 30, 60 μ g/mL).

10 **Cell migration assay**

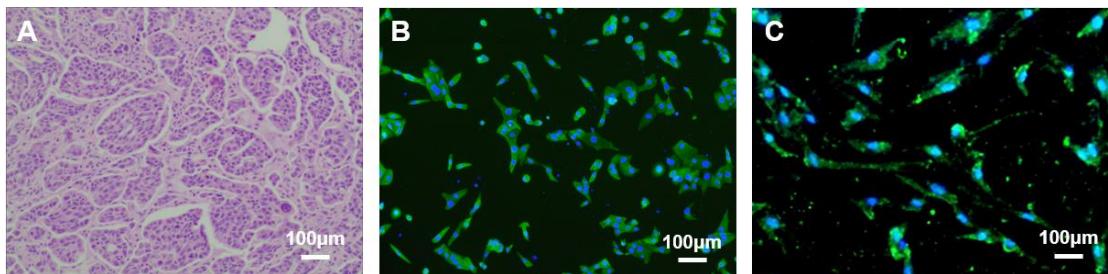
11 To evaluate the migration of tumor cells, scratch assay was performed. When the cells
12 were in the logarithmic growth, a 200 μ L tip was used to scratch the wells. Then they
13 were treated with LC 30 μ g/mL for SKOV₃, and 60 μ g/mL for hPOCCs. The cell scratch
14 length was measured at different times, and each experiment was repeated three times.

15 **Cell invasion assay**

16 To evaluate the invasion of tumor cells, transwell assay was performed. The cells were
17 pretreated with LC in the indicated concentrations for indicated time. Then they were
18 reclaimed for following study. Upper chambers were paved by Matrigel 5-6h before.
19 Then the cells were seeded respectively into the upper chambers (8- μ m pore) contained
20 200 μ L culture medium without FBS at a density of 3 \times 10⁵ cells/mL, and the lower well
21 contained 500 μ L culture medium containing FBS (10% for SKOV₃ and 15% for
22 hPOCCs). After 33-36h for SKOV₃ cells, 24-28h for hPOCCs, the chambers were
23 stained with crystal violet. Each experiment was repeated three times.

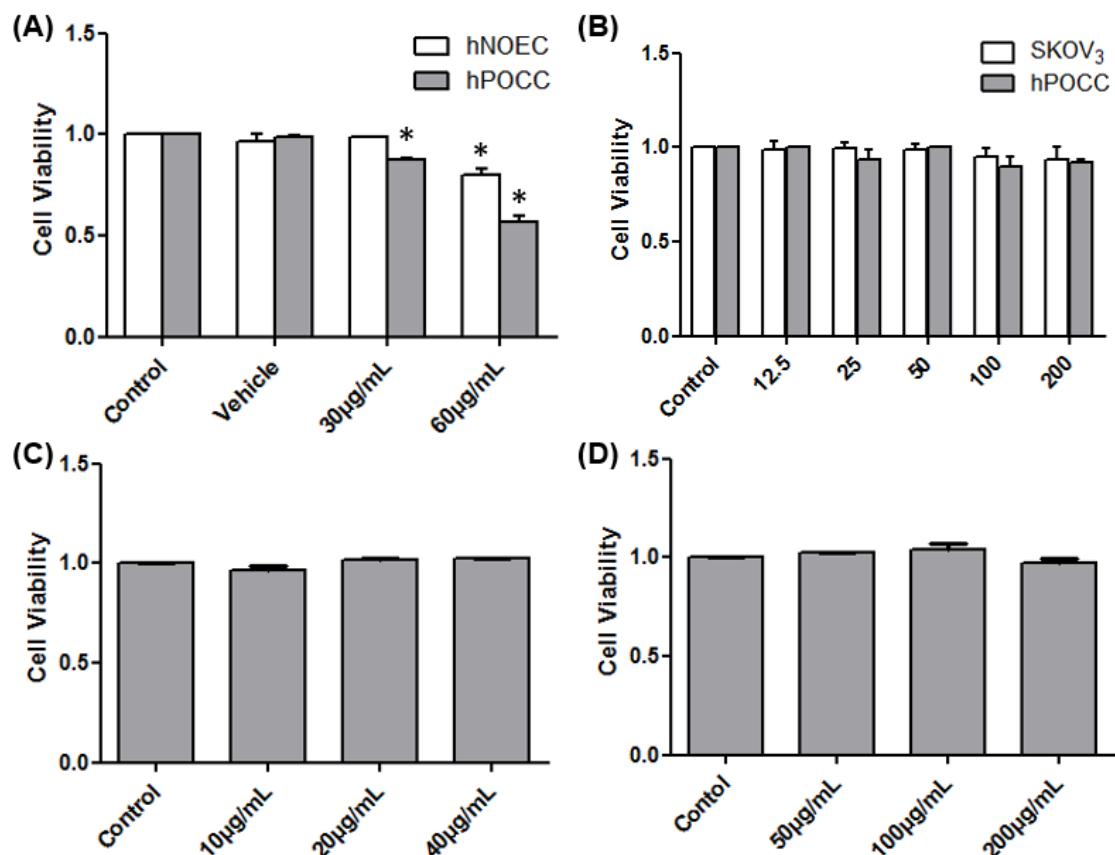
24 **Apoptosis assay**

1 Annexin-V FITC and PI staining. SKOV₃ cells and hPOCCs were treated with LC at
2 the indicated concentration for indicated time. Apoptosis of cells were stained by
3 Annexin-V FITC and PI (Sigma, USA). SKOV₃ groups and hPOCCs groups were
4 further analyzed by flow cytometry.


5 **Western blotting assay**

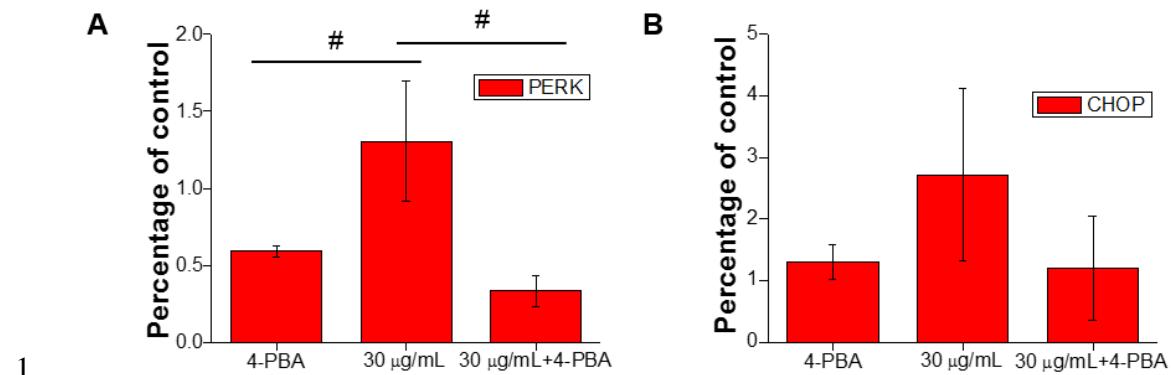
6 Cells were divided into different groups according to the LC concentration and
7 treatment time. Proteins from the different groups were separated by SDS-PAGE and
8 transferred to PVDF membrane. These membranes were incubated with antibodies
9 (Table S1, 1:1,000), and then incubated with secondary antibody (1:8,000). GADPH
10 was used as control. Images were captured by Gel DocTM gel documentation system
11 (Bio-Rad, USA) and intensities were quantified by Quantity-One software version 4.62
12 (Bio-Rad).

13 **qRT-PCR**

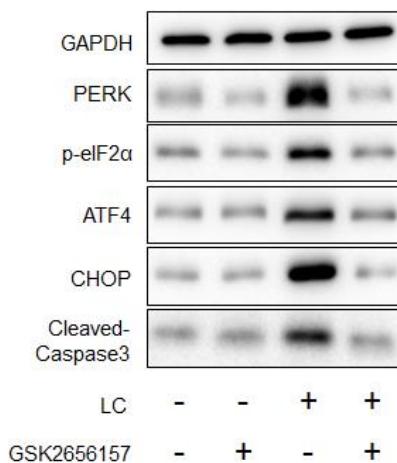

14 qRT-PCR was used to analyze the mRNA levels of BIP, PERK, eIF2 α , ATF4, CHOP,
15 and Caspase3. Primers were synthesized by Shanghai Sangon Biological Engineering
16 Technology. These primer sequences were listed in Table S2. The qRT-PCR Kits are
17 from Takara. The procedure was executed by Cobasz 480.

18

1 **Figure S1.** (a) Histology of human ovarian cancer tissue (H&E staining); (b) hPOCCs
 2 identified by cytokeratin 7-FITC; (c) hNOECs identified by cytokeratin 19-FITC.


3

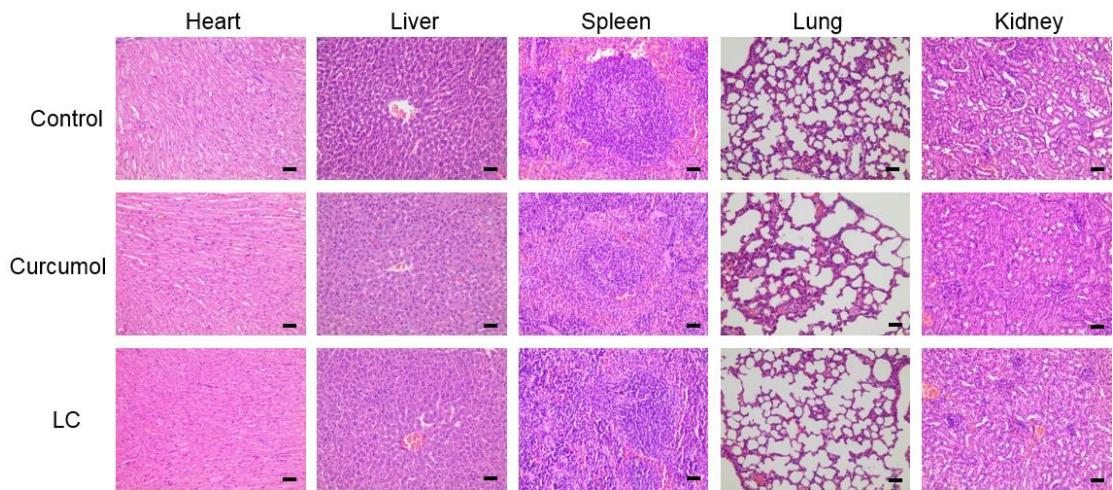
5


6 **Figure S2.** (A) Toxicity assay: hNOECs or hPOCCs were treated with LC (0, 30,
 7 60 μg/mL) for 24h. (B) Cells were exposed to liposome (0, 12.5, 25, 50, 100, 200 μg/mL)
 8 for 24h. SKOV3 Cells were exposed to (C) Gd-DTPA and (D) Gd-liposome for 24h.

9

10

11 **Figure S3.** SKOV₃ cells were pre-treated with the ERS inhibitor 4-PBA (15 μ M) for 2h and incubated with/without LC (30 μ g/mL) for 24h. The protein levels of (A) PERK and (B) CHOP were measured by WB assay in SKOV₃ cells. Data represented means \pm S.D. of three separate experiments. # $P\leq 0.01$ compared with control group. As shown in (B), the results of CHOP were not significant between LC group and LC+4-PBA group ($P=0.055$), which indicating that the ERS was important but not the only pathway inducing ovarian cancer cells to apoptosis in this study.

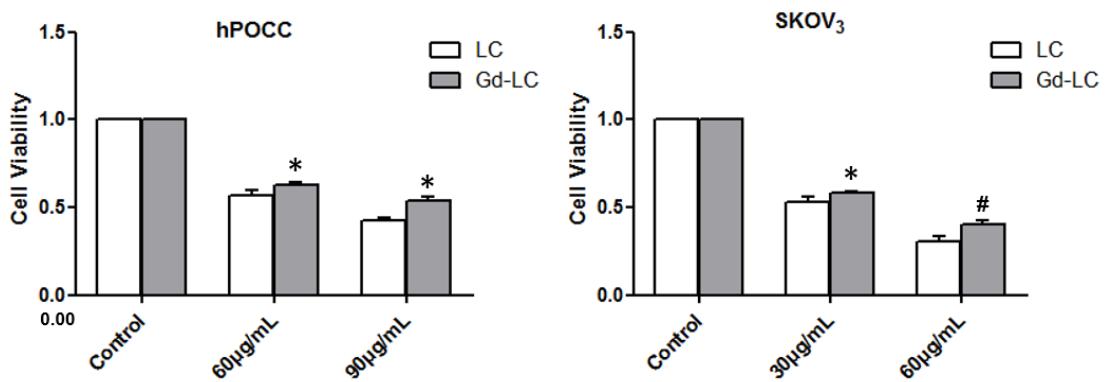


12

13

14

15 **Figure S4.** GSK2656157, a PERK inhibitor, reduced LC induced apoptosis mediated by PERK-CHOP branch of ERS. Cells were pretreated with GSK2656157(10 μ M) for 0.5h and incubated with/without LC (30 μ g/mL) for 24h. The protein levels of PERK, p-eIF2α, ATF4, CHOP, and cleaved-Caspase3 were measured by WB assay in SKOV₃ cells only.



2 **Figure S5.** H&E staining of major organs in different groups. Scale bars, 50 μ m.

3

4

5

6 **Figure S6.** Cells were exposed to LC or Gd-LC (0, 60, 90 μ g/mL for hPOCCs , and 0,
7 30, 60 μ g/mL for SKOV₃) for 24h.

8

9

1 **Table S1.** Information of antibodies.

Antibody	Company	Source
GAPDH	Proteintech	mouse
BIP	Proteintech	rabbit
PERK	Proteintech	rabbit
p-eIf2 α	CST	rabbit
ATF4	Proteintech	rabbit
CHOP	Santa Cruz	rabbit
cleaved-Caspase3	CST	rabbit

2
3
4

1 **Table S2.** Primer of target genes.

Primer	Forward	Reverse
BIP	5'-GCA CAG ACG GGT CAT TCC AC-3'	5'-TCC TAT GTC GCC TTC ACT CC-3'
PERK	5'-GCC CAC TTT CAC CTT CAG AG-3'	5'-CTG GTT CTT TGG TTG CTT GG-3'
eIf2 α	5'-AGG ACT GCC TGG GTC TTT G-3'	5'-CTT CCC GTT CAT CTT CAT TCA-3'
ATF4	5'-GTC CTG TCC ACT CCA GA- 3'	5'-GGG TGT CTT CCT TTA TGC-3'
CHOP	5'-TCT TCC TCT TCC TG-3'	5'-CAC TCT TGA CCC TGC TTC TC-3'
Caspase3	5'-TTGAGACAGACAGTGGTG- 3	5'-AGAGTTCTTTGTGAGCA-3'
GAPDH	5'-CCA CTC CAC CTT TG-3'	5'-CAC CAC CCT GTT GCT GT- 3'

2

3