Supplementary Material

A Novel Near-infrared Fluorescent Probe for Detecting Intracellular Alkaline Phosphatase and Imaging of Living Cells

Longbin Xu,^a Xu He,^b Yibing Huang,^b Pinyi Ma,^{*a} Yanxiao Jiang,^a Xin Liu,^a Shuo Tao,^c Ying Sun,^a Daqian Song,^a and Xinghua Wang,^{*a}

^a College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China

^b College of Life Sciences, Jilin University, Qianjin Street 2699, Changchun 130012,
China

^c Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

*Corresponding authors.

Tel: +86 431 85168399; Fax: +86 431 85168399

E-mails: mapinyi@jlu.edu.cn (Pinyi Ma); starred.wang@gmail.com (Xinghua Wang)

Experimental Section

Instrumentation and Chemicals

Mass spectra were recorded on a TSQ Quantum Access MAX triplequadrupole mass spectrometer (Thermo Fisher Scientific, USA). Nuclear magnetic resonance (¹H NMR, ¹³C NMR, and ³¹P NMR) spectra were measured on a Mercury 300BB NMR spectrometer (Varian Inc., USA) and an Avance III500 NMR spectrometer (Bruker Inc., Germany). UV-Vis absorption and fluorescence spectra were recorded on a Cary 60 UVspectrophotometer (Agilent Technologies, USA) and an F-7000 fluorescence spectrometer (Hitachi Co., Ltd. Japan), respectively. The pH values were measured using an INESA Scientific PHS-3C pH meter (INESA Scientific Inc., China). Cell imaging was carried out on an FV1000 laser scanning confocal microscope (Olympus Corporation, Japan).

Chemicals including 4-methoxysalicylaldehyde, 2methylbenzothiazole, PBr₃, Cs₂CO₃, BBr₃, POCl₃, and pyridine were purchased from Aladdin Chemistry Co., Ltd (Shanghai, China). Alkaline phosphatase (ALP), acid phosphatase (ACP), cysteine (Cys), glutathione (GSH), acetylcholinesterase (AChE) bovine serum albumin (BSA), and horse IgG were purchased from Shanghai Yuanye Biotechnology Co., Ltd. All other chemicals were of analytical grade and were used as received without further purification. All aqueous solutions were prepared with ultrapure water obtained from a Milli-Q water purification system (18.2 $M\Omega$ cm).

Synthesis procedures

Synthesis of Compound 1

DMF (4.48 mL) and CH_2Cl_2 (20 mL) were mixed and then cooled down to 0 °C. PBr₃ (5 mL) was then added dropwise to the mixture under vigorous stirring. After 30 min, cyclohexanone (4.9 mL) was added, and the mixture was stirred overnight at room temperature. After that, the reaction solution was poured into 30 mL of water, and then neutralized with solid NaHCO₃. Subsequently, the aqueous solution was extracted three times with CH_2Cl_2 (60 mL), and the organic layer was dried over Na₂SO₄ and evaporated to give a yellow oil product (2.6 g).

Synthesis of Compound 2

Freshly prepared compound **1** (0.204 g, 1.08 mmol) was dissolved in DMF (6 mL) and 4-methoxysalicylaldehyde (0.137 g, 0.9 mmol), and Cs₂CO₃ (0.88 g, 2.7 mmol) were added into the mixture under vigorous stirring. The mixture was stirred for 24 h at room temperature. The reaction solution was poured into CH₂Cl₂ and then washed three times with water. The organic layer was then dried over Na₂SO₄ and evaporated to give crude product. The compound **2** (bright yellow crystal) was purified by silica gel column chromatography using CH₂Cl₂ as the eluent. Yield: 0.147 g, 66.7 %; ¹H NMR (300 MHz, CDCl₃): δ 10.30 (1H, s), 7.08 (1H, d), 6.81–6.49 (3H, m), 3.84 (3H, s), 2.59–2.52 (2H, m), 2.44 (2H, t), 1.71 (2 H, p); ¹³C NMR (75 MHz, CDCl₃): δ 187.39, 161.37, 160.62, 153.35, 127.36, 126.68, 126.57, 114.66, 112.58, 110.77, 100.50, 55.57, 29.89, 21.49, 20.38; MS (ESI, m/z) calcd for [C₁₅H₁₄NO₃+H⁺]⁺: 243.16, found: 243.41.

Synthesis of Compound 3

2-methylbenzothiazole (0.5 g, 3.35 mmol) and ethyl iodide (0.78 g, 5 mmol) were dissolved in acetonitrile, and then heated at reflux for 24 h. The reaction solution was filtered and washed three times with diethyl ether to obtain white crystals of 3-ethyl-2-methylbenzo[d]thiazol-3-ium (0.52 g, 87 %). ¹H NMR (300 MHz, CD₃OD): δ 8.33 (1H, ddd), 8.28 (1H, dd), 7.92 (1H, ddd), 7.82 (1H, ddd), 4.85 (2H, q), 3.25 (3H, s), 1.60 (3H, t); ¹³C NMR (75 MHz, DMSO-d6): δ 176.85, 140.48, 129.39, 129.15, 128.06, 124.75, 116.73, 44.83, 16.97, 13.31; MS (ESI, m/z) calcd for [C₁₀H₁₂NS]⁺: 178.07, found: 178.41.

Synthesis of Compound 4

3-ethyl-2-methylbenzo[d]thiazol-3-ium (0.088 g, 0.5 mmol) and compound 2 (0.1 g, 0.41 mmol) were dissolved in Ac₂O, and then heated at reflux at 70 °C overnight. The reaction solution was filtered, redissolved in CH₂Cl₂, and washed three times with water. The organic layer was dried over Na₂SO₄ and evaporated to give the crude product, which was further purified by silica gel column chromatography, using CH₂Cl₂:CH₃OH (50:1-20:1 v/v) as the eluent; as a result, a blue solid product was obtained. Yield: 0.148 g (89.5 %); ¹H NMR (300 MHz, DMSO-d6): δ 8.24 (2H, dd), 8.07 (1H, d), 7.78 (1H, m), 7.59 (1H, t), 7.38 (1H, d), 7.21 (1H, s), 7.00 (1H, d), 6.89 (2H, m), 4.73 (2H, q), 3.87 (3H, s), 2.62 (4H, dd), 1.87 (2H, m), 1.39 (3 H, t); ¹³C NMR (75 MHz, DMSO-d6): δ 169.26, 161.75, 157.36, 153.53, 142.03, 140.88, 130.21, 128.88, 128.25, 127.10, 126.87, 126.53, 123.69, 115.33, 114.97, 112.51, 111.97, 105.15, 100.20, 55.96, 43.06, 28.48, 24.17, 19.90, 13.50; MS (ESI, m/z) calcd for [C₂₅H₂₄NO₂S]⁺: 402.15, found: 402.41.

Synthesis of MTR

Compound 4 (0.1 g, 0.25 mmol) was dissolved in CH₂Cl₂ at 0 °C, and BBr₃ (0.62 g, 0.25 mmol) was slowly added under vigorous stirring. The mixture was then stirred for 24 h at room temperature. The reaction solution was poured into ice water, and then neutralized with solid NaHCO₃. The aqueous layer was extracted with CH₂Cl₂, after which was washed three times with water. The organic layer was dried over Na₂SO₄ and evaporated to give the crude product, which was subsequently purified by silica gel column chromatography using CH₂Cl₂:CH₃OH (15:1 v/v) as the eluent; and a blue solid product was obtained. Yield: 0.074 g (76.5 %); ¹H NMR (300 MHz, DMSO-d6): δ 10.52 (1H, s), 8.26 (2H, dd), 8.07 (1H, d), 7.81 (1H, m), 7.63 (1H, t), 7.33 (1H, d), 7.23 (1H, s), 6.84 (1H, d), 6.81 (2H, m), 4.73 (2H, q), 2.64 (4H, d), 1.89 (2H, m), 1.40 (3H, t). ¹³C NMR (75 MHz, DMSO-d6): δ 169.21, 160.73, 157.88, 153.70, 142.18, 140.93,

131.00, 128.85, 128.60, 127.01, 126.77, 125.60, 123.71, 115.22, 113.99, 113.45, 111.83, 104.60, 101.81, 48.53, 28.44, 24.25, 20.02, 13.37. MS (ESI, m/z) calcd for [C₂₄H₂₂NO₂S]⁺: 388.14, found: 388.41.

Synthesis of CyR

CyR was prepared according to the procedure reported in the literature. 1 Firstly, 1-ethyl-2,3,3-trimethyl-3H-indol-1-ium was synthesized by the procedures reported in the literature.² Then, 1-ethyl-2,3,3-trimethyl-3H-indol-1-ium (0.093 g, 0.5 mmol) and compound 2 (0.1 g, 0.4 mmol) were dissolved in Ac₂O, and the mixture was then refluxed at 70 °C overnight. After the reaction solution was filtered, it was redissolved in CH₂Cl₂ and then washed three times with water. The organic layer was dried over Na₂SO₄ and then evaporated to afford the crude product containing Compound 5. After that, the crude product (0.1 g) was dissolved in CH₂Cl₂ at 0 °C, and BBr₃ (0.62 g, 2.5 mmol) was slowly added under vigorous stirring. After the mixture was stirred at room temperature for 24 h, it was poured into ice water, and then neutralized with solid NaHCO₃. After the aqueous layer was extracted with CH₂Cl₂, it was washed three times with water. The organic layer was dried over Na₂SO₄ and then evaporated to afford the crude product, which was subsequently purified by silica gel column chromatography using $CH_2Cl_2:CH_3OH$ (15:1 v/v) as the eluent. As a result, a blue solid product was obtained with a yield of 0.092 g (92.8 %). ¹H NMR (300 MHz, DMSO-d6): δ 10.76 (1H, s), 8.58

(1H, d), 7.76 (1H, d), 7.66 (1H, d), 7.59 – 7.50 (2H, m), 7.45 (2H, dd), 6.96 – 6.80 (2H, m), 6.51 (1H, d), 4.41 (2H, q), 2.69 (4H, dd), 1.89 – 1.79 (2H, m), 1.74 (6H, s), 1.37 (3H, t). ¹³C NMR (75 MHz, DMSO-d6): δ 176.44, 161.64, 161.05, 154.14, 144.75, 141.98, 141.12, 134.33, 129.24, 128.87, 126.74, 125.87, 122.78, 114.61, 114.43, 113.79, 112.74, 103.29, 101.97, 50.21, 40.04, 28.34, 27.43, 23.64, 20.02, 12.55. MS (ESI, m/z) calcd for $[C_{27}H_{28}NO_2]^+$: 398.21, found: 398.13.

Cytotoxicity Assay

The cytotoxic effect of MTR-P was examined by 3-(4,5-dimethyl-2thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. BEL-7402 cells (obtained from the Life Sciences College of Jilin University, Jilin, China) were seeded in a 96-well plate and then incubated at 37 °C for 24 h in an incubator saturated with 5% CO₂. After that, the cells were treated or untreated with different concentrations of MTR-P. After incubation at 37 °C for 24 h, MTT solution was added into each well and then removed after 4 h. Subsequently, DMSO was added into each well to dissolve formazan crystals. After shaking for 10 min, the absorbance at 490 nm was recorded on a microplate reader.

Figure S1. Fluorescence intensity of MTR (10 μ M) at 723 and CyR (10 μ M) at 712 nm (CH₃OH:H₂O, 1:99 v/v, 25 mM Tris-HCl buffer solution, pH=8.0) as a function of time (0-60 min) under excitation at 680 nm.

Figure S2. Effect of pH on the fluorescence response changes of MTR-P (10 μ M) in the absence of ALP and in the presence of ALP (10 U L⁻¹).

Figure S3. Time Fluorescence spectra of MTR-P upon addition of ALP (2.5, 5, 10, 20 U L⁻¹) in Tris-HCl buffer solution.

Figure S4. A plot of fluorescence intensity versus ALP concentration.

Figure S5. Fluorescence spectra of MTR-P (10 μ M) in the presence of ALP at different Na₃VO₄ (0-300 μ M) concentrations in Tris-HCl buffer solution

(25 mM, pH = 8.0).

Figure S6. ESI-MS spectrum of MTR-P with the addition of ALP (20 U L-

¹).

Figure S7. HPLC chromatograms of (a) MTR-P, (b) MTR and (c) MTR-P reacted with ALP.

Figure S8. Cell viability of BEL 7402 treated with different concentrations.

of MTR-P over 24 h.

Figure S9. Bars represent the fluorescence intensities from the corresponding HEK 293T cells.

Figure S10. Bars represent the fluorescence intensities from the corresponding BEL 7402 cells.

Figure S11. ESI-MS spectrum of Compound 2.

Figure S12. ¹H NMR (300 MHz, CDCl₃) of Compound 2.

Figure S14. ESI-MS spectrum of Compound 3.

Figure S15. ¹H NMR (300 MHz, CD₃OD) of Compound 3.

Figure S16. ¹³C NMR (75 MHz, DMSO-d6) of Compound 3.

Figure S17. ESI-MS spectrum of Compound 4.

Figure S18. ¹H NMR (300 MHz, DMSO-d6) of Compound 4.

Figure S19. ¹³C NMR (75 MHz, DMSO-d6) of Compound 4.

Figure S20. ESI-MS spectrum of MTR.

Figure S21. ¹H NMR (300 MHz, DMSO-d6) of MTR.

Figure S22. ¹³C NMR (75 MHz, DMSO-d6) of MTR.

Figure S23. ESI-MS spectrum of MTR-P.

Figure S24. ¹H NMR (500 MHz, CD₃OD) of MTR-P.

Figure S27. ¹H NMR (300 MHz, DMSO-d6) of CyR.

Figure S28. ¹³C NMR (75 MHz, DMSO-d6) of CyR.

Probe Struture	λev/λem (nm)	Detection Limit	Response	Refernce
Trobe Struture		(U L ⁻¹)	(min)	Keternee
O, OH HO'O	680/723	0.042	15	This work
	680/700	0.07	25.2	2
	430/539, 641	0.15	45	3
	312/450	0.2	5	4
	550/585	1.09	20	5
	330/430	1.3	40	6

Table S1. Comparison of the performance of MTR-P with previously

reported fluorescent probes for ALP.

NC CN HO, O HO, O	488/550, 650	3.8	30	7
	350/480	18	15	8
N C CN P-ONa ONa	460/525		30	9

References

 Jean-Alexandre Richard, Organic & Biomolecular Chemistry, 2015, 13, 8169–8172

 Y. Tan, L. Zhang, K. H. Man, R. Peltier, G. Chen, H. Zhang, L. Zhou,
F. Wang, D. Ho, S. Q. Yao, Y. Hu and H. Sun, ACS Applied Materials & Interfaces, 2017, 9, 6796-6803.

3. Z. Song, R. T. K. Kwok, E. Zhao, Z. He, Y. Hong, J. W. Y. Lam, B. Liu and B. Z. Tang, ACS Applied Materials & Interfaces, 2014, 6, 17245-17254.

4. J. Liang, R. T. K. Kwok, H. Shi, B. Z. Tang and B. Liu, ACS Applied Materials & Interfaces, 2013, 5, 8784-8789.

5. H. Zhang, C. Xu, J. Liu, X. Li, L. Guo and X. Li, Chemical Communications, 2015, 51, 7031-7034.

6. C. Fan, S. Luo and H. Qi, Luminescence, 2016, 31, 423-427.

7. Z. Lu, J. Wu, W. Liu, G. Zhang and P. Wang, RSC Advances, 2016, 6, 32046-32051.

8. X. Gu, G. Zhang, Z. Wang, W. Liu, L. Xiao and D. Zhang, Analyst, 2013, 138, 2427-2431.

9. T.-I. Kim, H. Kim, Y. Choi and Y. Kim, Chemical Communications,

2011, 47, 9825-9827.