## **Supporting Materials**

## La-doped Biomimetic Scaffolds Facilitate Bone Remodelling by Synchronizing Osteointegration and Phagocytic Activity of Macrophages

Junhui Yin<sup>a</sup>, Jianqing Yu<sup>b</sup>, Qinfei Ke<sup>b</sup>, Qianhao Yang<sup>a</sup>, Daoyu Zhu<sup>a</sup>, Youshui Gao<sup>\*a</sup>, Yaping Guo<sup>\*b</sup>

and Changqing Zhang\*a

<sup>a</sup> Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China

\*E-mail: gaoyoushui@sjtu.edu.cn (Youshui Gao); zhangcq@sjtu.edu.cn (Changqing Zhang).

<sup>b</sup> The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China

\*E-mail: ypguo@shnu.edu.cn (Yaping Guo).



**Fig. S1** (a) SEM image of Ca9La1-HA nanoparticles. (b) La, (c) Ca and (d) P element distribution images of Ca9La1-HA nanoparticles.



Fig. S2 XRD patterns of HA, Ca5La1, Ca7La1 and Ca9La1 nanoparticles.



Fig. S3 (a) XRD patterns and (b) FTIR spectra of CS, Ca9La1 and Ca9La1/CS scaffolds.



**Fig. S4** (a) H&E staining and (b) Van Gieson staining of craniums with two cranial defects implanted with HA/CS and Ca9La1/CS scaffolds. The arrows indicated the newly formed bone tissues.



**Fig. S5** CCK-8 assay indicated the proliferation of RAW264.7 macrophages co-cultured with the blank control, HA/CS and Ca9La1/CS scaffolds.