Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Accurate intracellular and in vivo temperature sensing based on CuInS₂/ZnS QD micelles

Hui Zhang^{a,†}, Youshen Wu^{b,†}, Zhenhai Gan^a, Yuexuan Yang^a, Yiming Liu^a, Peng

Tang^a, Daocheng Wu^a*

^a Key Laboratory of Biomedical Information Engineering of Education Ministry,

School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.

R. China

^b Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China

* Corresponding author: Tel/Fex: +86 029 82663941 E-mail: wudaocheng@mail.xjtu.edu.cn (Daocheng Wu)

† These authors contributed equally to this work.

1.Preparation of CuInS₂/ZnS QDs

Briefly, we mixed 0.4 mmol of indium acetate and 0.4mmol of CuI in a 50 mL three-necked flask, then added 1.0 mL of DDT and 10 mL of ODE with continuous N_2 flow. The soulution was heated to 80 °C, magnetically stirred for 1 h, then raised the temperature to 210 °C. After maintaining the mixture at 210 °C for 30 min, the reaction solution was cooled at room temperature. The CuInS₂ QDs cores were separated by added excess acetone and 5 min of centrifugation at 8500 rpm. After discarding the supernatant, repeat the washing and centrifugation three times. The precipitate was then separated in n-hexane for further use or dried in the form of powder for characterization.

To prepare core/shell CuInS₂/ZnS QDs, the temperature of the CuInS₂ core solution was heated to 80 °C. Then, zinc stearate (0.8 mM) were sufficient mixed with 3.2 mL of ODE and 0.8 mL of oleylamine, injected into the flask containing core. The mixture was then heated to 210 °C maintained 30 min to grow the shells. Core/shell QDs were purified through the same process as QD cores.

2. Preparation of micelle-encapsulated CuInS₂/ZnS QDs.

The resulting core/shell QDs could be successfully transferred into water through well-established preparation protocols.¹⁻³ In a typical experiment, 250 μ L of 1 mg·mL⁻¹ CuInS₂/ZnS QD chloroform solution and 50.0 mg of PS were dispersed in a round-bottomed flask by 2.0 mL of chloroform. PS is a cheap amphiphilic stearate derivative with a long PEG tail that is structurally similar to PEG-DSPE. To prepare the QD-micelles, we evaporated the chloroform in vacuum drying oven for 30 min. The obtained thin film was heated over a water bath for 2 min at 70 °C and mixed with 5.0

mL of water. After ultrasonicated for 1 min repeated three times, the QD-micelles solution was obtained. The resulting QD-micelles were filtered through a 0.22 μ m membrane filter for further use.

3.Figures

Figure S1 Absorption (Ab) and emission (Em) spectra of $CuInS_2$ QDs dispersed in nhexane (as synthesized) or water (after PS micelle-encapsulation). Both of QDs and QD-micelles were excited at 488nm.

Figure S2 PL decay curves of the $CuInS_2/ZnS$ QDs in hexane and QD-micelles in PBS of the PL peak at 645 nm. The excitation wavelength was 488 nm. The obtained decay parameters were also given in table below.

Figure S3 Fluorescence differences of the heated QD-micelles solution sample (right) and the control (left) as it cooled from 63 °C to 23 °C, under 365 nm UV illumination.

Figure S4 Temperature-dependent PL emission spectra of CuInS₂/ZnS QDs in hexane (A) and in octadecene (B).

Figure S5 MTT assay on Hela (A) and PC-3 (B) cells exposed to QD-micelles and PS micelles at different concentrations from 0 to 300 μ g·mL⁻¹ for 24 h. Data represent mean ± SD of six determinations. A T-test was performed; **p < 0.01 compared with PS micelles-treated cells.

Figure S6 MTT assay on Hela cells exposed to QD-micelles and PS micelles at different concentrations from 300 to 500 μ g·mL⁻¹ for 24 h.

Figure S7 Confocal fluorescence imaging (z stacking) in every 1 μ m at a depth of 0 to 15 μ m.

Figure S8 (A)-(F) Fluorescence imaging of HeLa cells in temperature range of 25 °C, 28°C, 31°C, 34°C, 37°C and 40°C. The insets plot in every image displayed intensity distribution at respective temperature.

Figure S9 (A) The average fluorescence intensity of cells during continuous incubation for 90 minutes. (B) The average fluorescence intensity of cells repeated heating and cooling from 0 °C-60 °C. Error bars, SD, n=3

Figure S10 PL intensity change at the ROIs (regions of interest) of QD-micelles injected tumor and non-injection tumor at different temperatures. Image analysis was performed using Image J software. Error bars, SD, n=3.

Figure S11. NIR fluorescence imaging of the tumor 15 min (A) and 240 min (B) after subcutaneous injection of 50 μ L of QD–micelles in the concentration of 2 mg·mL⁻¹ into the right tumor. (C) Graph representing the variation of fluorescence intensity of tumor site from 0 to 480 minutes after injection of QD-micelles. Error bars, SD, n=3.

Figure S12. NIR fluorescence imaging of the tumor after subcutaneous injection of 50 μ L of QD–micelles in the concentration of 2 mg·mL⁻¹ in a heating and cooling cycle.

References:

1. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaber, *Science*, 2002, **298**, 1759-1762.

2. O. Carion, B. Mahler, T. Pons and B. Dubertret, *Nat. Protoc.*, 2007, **2**, 2383-2390.

3. H. Y. Fan, E. W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M. C. Wilson and C. J. Brinker, *Nano Lett.*, 2005, **5**, 645-648.