Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Experimental supporting information

NIR light-responsive short peptide/2D NbSe₂ nanosheets composite hydrogel with controlled-release capacity

Can Wu, ‡a Jing Liu, ‡aBin Liu, a Suyun He, a Guoru, Dai, a Bo Xu b*, Wenying Zhong ac*

- ^a Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- ^b Department of Physics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- ^C Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, People's Republic of China

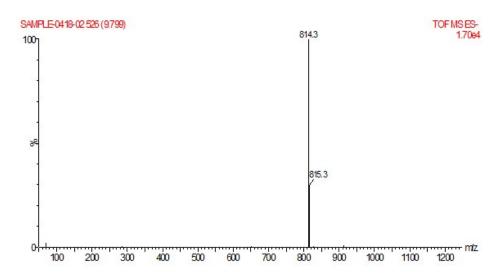
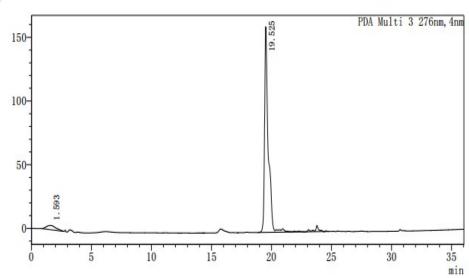



Fig. S1 MS spectra of YD peptide (m/z 814.3 [M-H])

Reversed phase high performance liquid phase conditions: Mobile phase: A phase: 0.1% TFA- water; B phase: 0.1% TFA- Methanol

Elution conditions:

Time (min)	A (%)	B (%)
0-25	55-0	45-100
25-27	0	100
27-35	0-55	100-45

Fig. S2 The liquid chromatogram of YD peptide

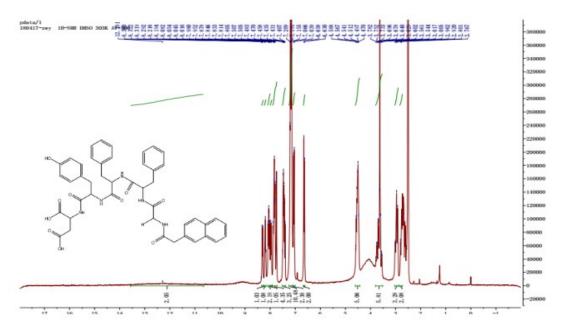
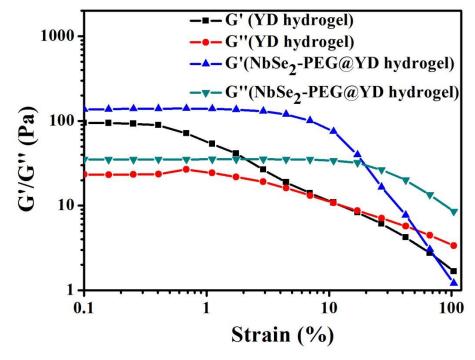
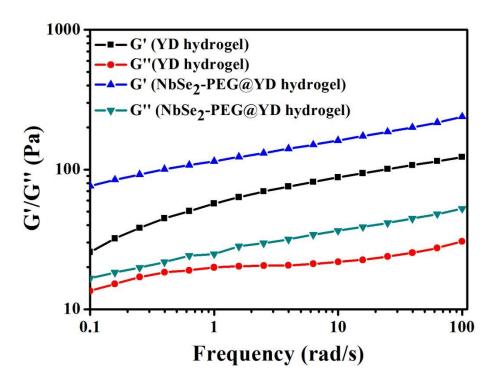




Fig. S3 ¹H-NMR spectra of YD peptide

δ= 12.291 (broad peak, 2H), 8.360-8.292 (d, J= 7.81, 1H), 8.216-8.194 (d, J= 5.55, 1H), 8.082-8.016 (m, 2H), 7.980-7.952 (d, J= 8.02, 1H), 7.878-7.805 (m, 4H), 7.507-7.407 (m, 3H), 7.209-7.155 (m, 10H), 7.066-7.039 (d, J= 7.97, 2H), 6.658-6.630 (d, J= 8.82, 2H), 4.588-4.470 (m, 5H), 3.782-3.544 (m, 6H), 3.017-2.920 (m, 2H), 2.801-2.767 (d, J= 11.16, 2H)

Fig. S4 Dynamic Strain Sweep Test of 2.0 wt% YD hydrogel and NbSe₂-PEG@YD hydrogel (Frequency: 6.28 rad/s; Strains: 0.1~100%)

Fig. S5 Dynamic Frequency Sweep Test of 2.0 wt% YD hydrogel and NbSe₂-PEG@YD hydrogel (Strain: 0.2%; Frequency: 0.1~100 rad/s)

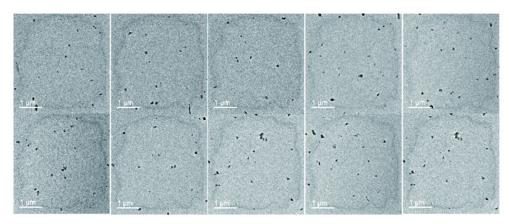
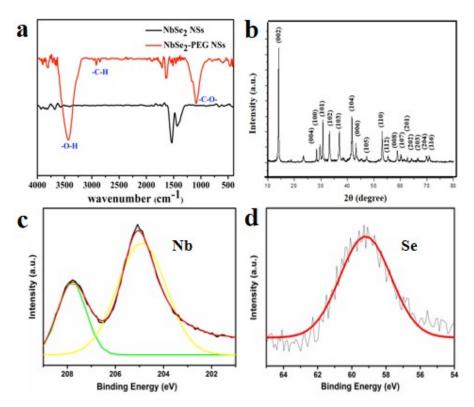
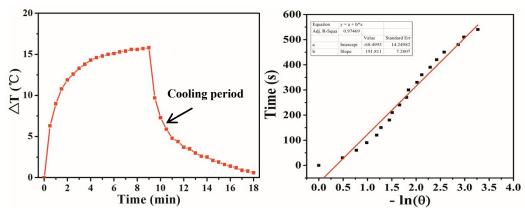
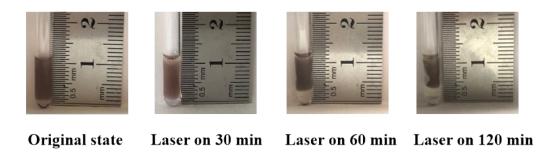




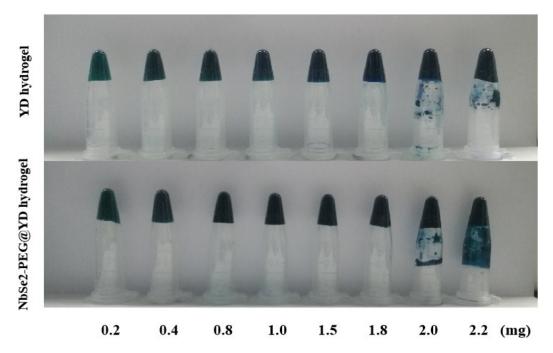
Fig. S6 TEM images of NbSe₂-PEG NSs

Fig. S7 (a) FTIR spectra of NbSe₂ NSs and NbSe₂-PEG NSs; (b) XRD spectra of NbSe₂-PEG NSs; (c) (d) XPS spectra of NbSe₂-PEG NSs

Fig. S8 (a) Photothermal heating curve of the NbSe₂-PEG NSs aqueous solution upon 808 nm laser irradiation (2 W/cm²) and then the laser was turned off; (b) Linear time data versus-ln (θ) obtained from the cooling period of (a).


To measure the photothermal conversion performance of the NbSe₂-PEG NSs, $500~\mu L$ of the NbSe₂-PEG NSs aqueous solution was determined by the follow ing equations:

```
\begin{split} \eta &= \ hS(T_{max}\text{-}T_{max,water})/I(1\text{-}10\text{-}A808}) \\ hS &= \ \sum \! \! mC_p/\tau_s \\ \tau_s &= \ \text{-}t/ln\theta \\ \theta &= \ (T_{amb}\text{-}T)/(T_{amb}\text{-}T_{max}) \end{split}
```


In the equations, h is the heat-transfer coefficient, S is the surface area of the

container, T is the real-time temperature, T_{max} is the maximum system temperature, and T_{amb} is the ambient temperature of the surroundings, I is the laser power, A_{808} is the absorbance of the solution at 808 nm. The variable τs is the sample-system time constant, and m and C are the mass and heat capacity of the deionized water used as the solvent.

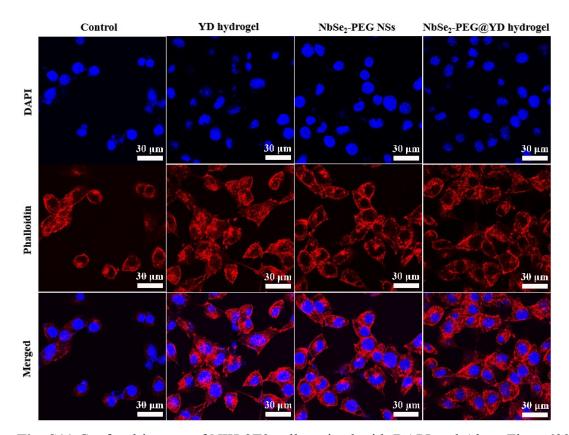

```
\begin{array}{l} A_{808} \!\!\!\! = 0.15442 \\ \tau_s \!\!\!\!\! = 192 \ s \\ hs \!\!\!\! = 0.5 \!\!\!\! \times \!\!\!\! 4.2/192 \!\!\!\! = \!\!\! 0.011 \\ \eta \!\!\!\! = \!\!\!\! \{ [0.011 \!\!\!\! \times \! (15.8 \!\!\!\! - \!\!\! 2.65)]/2 \!\!\!\! \times \! (1 \!\!\!\! - \!\!\! 10^{\text{-}0.15442}) \!\!\!\! \times \! 100\% \!\!\!\!\! = 24.1\% \end{array}
```


Fig. S9 Optical images of NbSe₂-PEG@YD hydrogel after 0 min, 30 min, 60 min and 120 min under NIR irradiation (808 nm, 2 W/cm²).

Fig. S10 Images of inverted vials with hydrogels showing gelation and maximum loading capacity. Loading capacity is indicated as the amount of Malachite Green (mg) per 200 μ L of 2% (w/v) YD hydrogel and NbSe₂-PEG@YD hydrogel.

Fig. S11 Confocal images of NIH 3T3 cells stained with DAPI and Alexa Fluor 633 phalloidin after treatment with YD hydrogel, NbSe₂-PEG NSs, and NbSe₂-PEG@YD hydrogel for 24 h. The fluorescence of DAPI and Alexa Fluor 633 phalloidin are colored as blue and red, respectively.