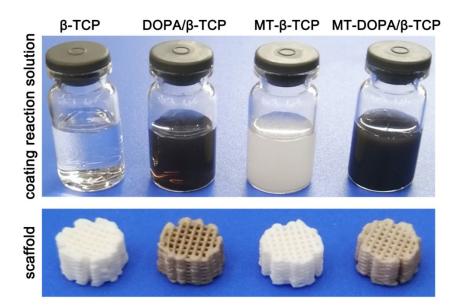
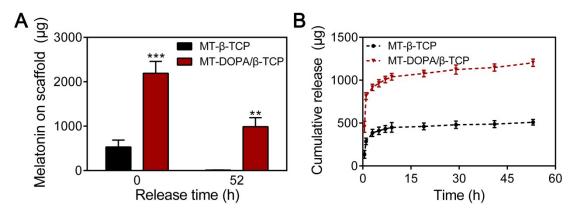
Supporting information

Melatonin decorated 3D-printed beta-tricalcium phosphate scaffolds promoting bone regeneration in a rat calvarial defect model

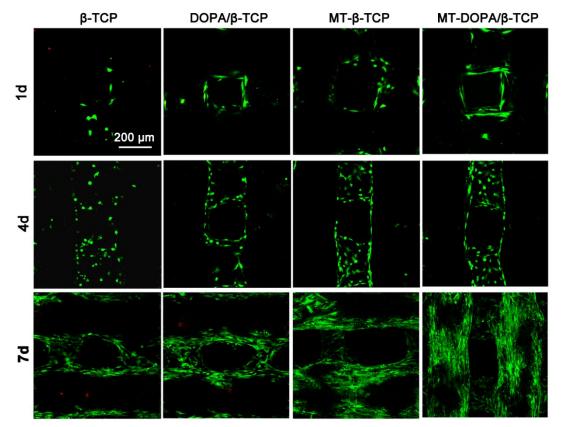
Yali Miao,^{a, b, †} Yunhua Chen,^{a, b, †} Xiao Liu,^{c, d} Jingjing Diao, ^{c, d} Naru Zhao,^{a, b*} Xuetao Shi,^{b, c, d} and Yingjun Wang, ^{b, c, d*}


^a School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China. E-mail: nrzhao@scut.edu.cn

^b National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China. E-mail: imwangyj@163.com


^c Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China

^d Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China


[†] These authors contributed equally

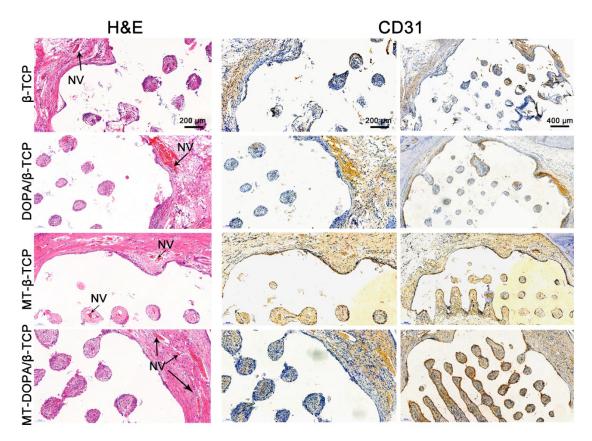

Fig. S1 The coating solution for TCP scaffolds and the appearance of obtained scaffolds after decorated with MT and/or DOPA.

Fig. S2 (A) HPLC quantitative analysis of the total amount of MT loaded on the scaffolds and the residual amount of melatonin on the surface of the scaffolds after 52 h release. (B) The absolute value of melatonin release from scaffolds was characterized by HPLC.

Fig. S3 Enlarged confocal fluorescence images of mBMSCs cells on scaffolds by staining with calcein AM (live cells, green fluorescence) and PI (dead cells, red fluorescence).

Fig. S4 H&E staining and CD31 immunohistochemical staining images of the scaffold-filled areas at week 8 after implantation. NV represents for new vessel.