Supplementary information

Hyaluronic acid mediated biomineralization of multifunctional ceria nanocomposites as ROS scavengers and tumor photodynamic therapy agents

Yiping Zeng ^{a, 1}, Weinan Zeng ^{a, b, 1}, Qing Zhou ^c, Xiaolin Jia ^a, Juan Li ^b, Zhangyou Yang ^d *, Yuhui Hao ^{c, *}, Junli Liu ^{a, *}

a Department of orthopedics, Chongqing general hospital, University of Chinese Academy of Sciences, Chongqing, 400014, China.

b Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China

c State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China

d Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing

* Address correspondence to oyzhangyou@126.com, yuhui_hao@126.com,

lili198418@163.com

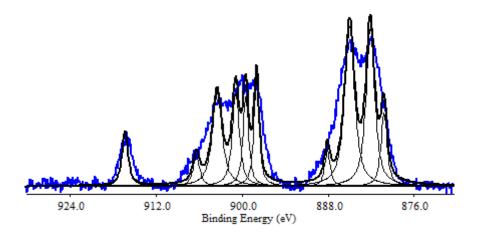
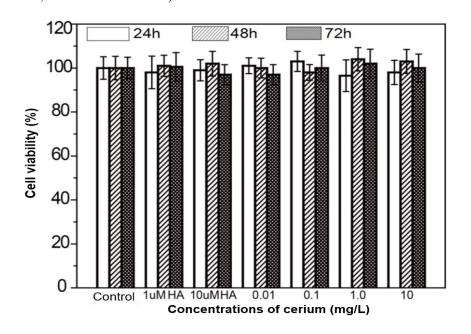



Fig. S1. The integrated XPS spectrum related to the valence state of cerium ions and corresponding binding energy peaks for Ce^{3+} (880.20, 885.00, 899.50 and 903.50 ev) and Ce^{4+} (882.10, 888.10, 898.00, 900.90, 906.40 and 916.35 ev).

Fig. S2. Relative cell viability data obtained from the CCK-8 assay of L-02 Cell after treated with various concentrations of HA@CQDs for 24h, 48h and 72h.

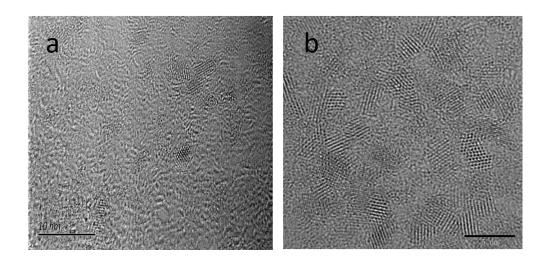


Fig. S3. The TEM spectrum of CNLs-Ce6 (a, scale bar 10nm) and HA@CQDs-Ce6 (b, scale bar

5nm)

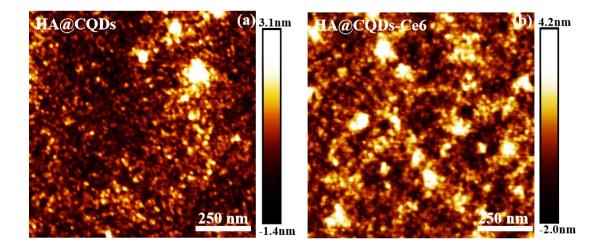
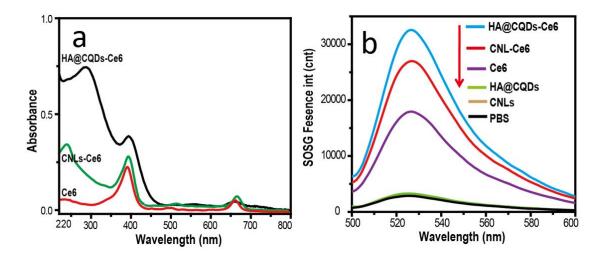



Fig. S4. The AFM spectrum of HA@CQDs (a) and HA@CQDs-Ce6 (b)

Fig. S5. (a) The UV/vis spectrum of Ce6, CNLs-Ce6, HA@CQDs-Ce6, (b)Singlet oxygen generation of HA@CQDs-Ce6, CNLs-Ce6, free Ce6, HA@CQDs, CNLs and PBS (1 mM) after irradiation with 660 nm laser (0.2 W/cm²) for 5min.

	ALT	AST
PBS	32.4±15.7	40.9±15.3
HA@CQDs	42.9±22.5	63.9±16.7

Table s1 the ALT and AST value of the mice treatment with PBS and HA@CQDs

Table s2 the hematological markers value of the mice treatment with PBS and HA@CQDs

	WBC	HGB	RBC	НСТ	MCV	MCHC	PLT	РСТ
PBS	6.69±1.03	108±20.1	7.07±1.38	32.3±6.56	45.6±1.65	338±12.7	894±192	0.52±0.11
HA@CQDs	6.50±1.27	112±15.8	6.93±1.34	31.6±5.69	45.7±1.31	358±24.1	863±219	0.52±0.12

Fig. S6. Release of Ce6 from HA@CQDs-Ce6 in pH 7.4 and 5.0.

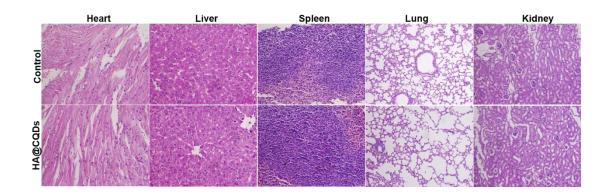


Fig. S7. H&E stained images of major organs collected from untreated mice and intravenously

injected with HA@CQDs at day 2 post treatment.

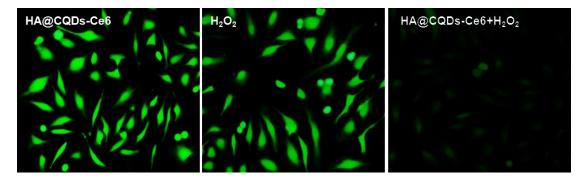
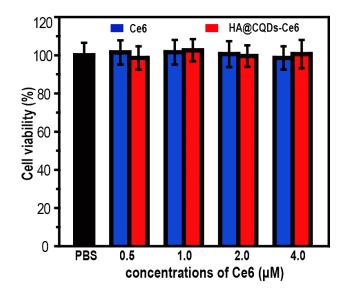



Fig. S8. the images of intracellular O₂ generation after HeLa cells incubated with HA@CQDs-Ce6,

 H_2O_2 and HA @CQDs-Ce6/H_2O_2.

Fig. S9. Relative cell viability data obtained from the CCK-8 assay of HeLa cells after treated with various concentrations of Ce6, and HA@CQDs without light irradiation by 662 nm laser.