Highly Conductive, Flexible and Stretchable Conductors Based on Fractal Silver Nanostructures

Sufeng Zhang,^a Yongwei Li,^{a, b} Qingyong Tian,^b Li Liu,^b Weijing Yao,^b Congcong

Chi,^a Pan Zeng, ^{b, c} Nan Zhang,^a Wei Wu^{b, c}*

^a School of Light Industry Technology and Engineering, Shaanxi University of

Science & Technology, Xi'an 710021, P. R. China

^b Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of

Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China

^c Shenzhen Research Institute of Wuhan University, Shenzhen 518057, P. R. China

Figure S1 The photography of (a) the T2 sample at releasing state and (b) the T2 sample under 180° bending state.

^{*}To whom correspondence should be addressed. Tel: +86-27-68778529. Fax: +86-27-68778433. E-mail: <u>weiwu@whu.edu.cn</u> (W. Wu).

Figure S2 Under 100 bending cycles (180°), the relative resistance change of (a) the T3 sample with the 1 cm width and (b) the T2 sample with the 2 cm width.

Figure S3 Under 10,000 bending cycles (180°), the resistance change of the T2 sample

(1 cm width).

Figure S4 The photography of (a) the T2 sample at releasing state and (b) the T2 sample under 30 % stretching state.

Figure S5 The relative resistance change of the T2 sample with the 2 cm width under

100 stretching cycles (30 %).

Figure S6 the photography of (a) the T2 sample under twisting state and (b) the T2

sample under 30 % twisting-stretching state.

Figure S7 the photography of (a) the T2 sample at releasing state and (b) the T2

sample under 100 % stretching state.