Supplementary Information

Cation, magnetic, and charge ordering in MnFe₃O₅

K. H. Hong,^a A. M. Arevalo-Lopez,^b M. Coduri,^c G. M. McNally^a and J. P. Attfield*^a

^a Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK.

^b Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

^c European Synchrotron Radiation Facility 71 avenue des Martyrs 38000, Grenoble, France

Table 1. Lattice parameters, atomic coordinates, and isotropic thermal displacements from neutron refinements in *Cmcm* space group of MnFe₃O₅ at 5 K. Estimated standard deviations for independent variables are shown in parentheses. ($R_{wp} = 12.9$ % and $R_p = 12.6$ %)

<i>a</i> /Å	b /Å			<i>c</i> /Å	Volume /Å ³		
2.9017(3) 9.8928(7)			7)	12.6083(11)	361.94(5)		
Atom	Site	x	У	Ζ	Occupancy ^a	${ m B}_{iso}$ /Å ²	
Fe1	8 <i>f</i>	1/2	0.2345(4)	0.1131(3)	1	2.42(12)	
Fe2/Mn2	4 <i>a</i>	0	0	0	0.995(4)/0.005(4)	2.42(12)	
Mn/Fe	4 <i>c</i>	0	0.4812(16)	1⁄4	0.937(4)/0.063(4)	2.42(12)	
01	4 <i>c</i>	1/2	0.3188(9)	1⁄4	1	3.00(15)	
O2	8 <i>f</i>	0	0.3469(6)	0.0473(7)	1	3.00(15)	
O3	8 <i>f</i>	0	0.0992(6)	0.1410(7)	1	3.00(15)	

^a Variable occupancies were refined against 400 K neutron data and were fixed in lower temperature refinements.

Table 2. Metal-oxygen bond lengths and metal-metal distances , with mean values <> shown for $MnFe_3O_5$ at 5 K.

Bond	Distance (Å)	Bond	Distance (Å)
Mn-O1 (x 2)	2.165(14)	Fe2-O2 (x 4)	2.180(5)
Mn-O3 (x 4)	2.314(11)	Fe2-O3 (x 2)	2.031(9)
<mn-o></mn-o>	2.264(5)	<fe2-o></fe2-o>	2.130(3)
Fe1-O1	1.917(6)	Fe1-Fe1,	2.9015(3)
Fe1-O2	2.177(10)	Fe2-Fe2,Mn-Mn	
Fe1-O2 (x 2)	2.007(6)	Fe1-Fe2(x 2)	2.989(4)
Fe1-O3 (x 2)	2.005(6)	Fe1-Fe2(x 4)	3.085(4)
<fe1-o></fe1-o>	2.020(3)		

Table 3. Irreducible representations (IrReps) and basis vectors (BV) for Fe1, Fe2 and Mn spin order in MnFe₃O₅ at 5 K, with propagation vector (0 0 0). The magnetically independent atoms are Fe1 at ($\frac{1}{2}$, 0.2345, 0.1131), Fe2 at (0, 0, 0) and Mn1 at (0, 0.4812, $\frac{1}{4}$). The symmetry related positions are generated by the operators 1: (*x*, *y*, *z*), 2: (-*x*+ $\frac{1}{2}$, -*y*+ $\frac{1}{2}$, *z*+ $\frac{1}{2}$), 3: (-*x*+1, *y*, -*z*+ $\frac{1}{2}$), 4: (*x*- $\frac{1}{2}$, -*y*+ $\frac{1}{2}$, -*z*+1), 5: (-*x*, -*y*, *z*+ $\frac{1}{2}$) and 6: (-*x*, -*y*+1, *z*+ $\frac{1}{2}$). The structure was solved using $\Gamma_2\psi_3$, $\Gamma_6\psi_8$ and $\Gamma_6\psi_9$ for Fe1 and Fe2, and $\Gamma_3\psi_4$, $\Gamma_6\psi_8$ and $\Gamma_7\psi_{11}$ for Mn1.

IrReps		Γ_1		Γ_2	Γ ₃	Γ4		Γ_5	Γ ₆		Γ_7		Γ_8
В	3V	ψ_l	ψ_2	Ψ3	ψ_4	ψ_5	ψ_6	ψ_7	ψ_8	ψ_9	ψ_{10}	ψ_{11}	ψ_{12}
Atoms		m_y	m_z	m_x	m_x	m_y	m_z	m_x	m_y	m_z	m_y	m_z	m_x
Fe1_1		+	+	+	+	+	+	+	+	+	+	+	+
Fe1_2		-	+	-	-	-	+	+	+	-	+	-	+
Fe1_3		+	-	-	+	-	+	-	+	-	-	+	+
Fe1_4		-	-	+	-	+	+	-	+	+	-	-	+
Fe2_1				+		+	+		+	+			+
Fe2_5				-		-	+		+	-			+
Mn1_1		+			+		+		+			+	+
Mn1_6		-			-		+		+			-	+

Table 4. The magnetic components and total moment on each magnetic ion in MnFe₃O₅ between 5 and 300 K.

Sites		5 K	75 K	150 K	300 K
Fe1	Total	3.9(3)	4.2(2)	3.7(1)	2.4(1)
$(\mu_{\rm B})$	x	1.6(1)	0	0	0
	y	1.5(2)	1.4(1)	0	0
	Ζ	3.2(1)	3.9(1)	3.7(1)	2.4(1)
Fe2	Total	3.1(4)	4.1(1)	4.0(1)	2.7(1)
$(\mu_{\rm B})$	x	1.7(1)	0	0	0
	у	1.0(2)	0	0	0
	Z	2.4(1)	4.1(1)	4.0(1)	2.7(1)
Mn	Total	3.1(6)	1.88(2)	0	0
$(\mu_{\rm B})$	x	0	0	0	0
	У	2.6(3)	1.88(2)	0	0
	Ζ	1.7(4)	0	0	0

Figure 1. Rietveld fit to synchrotron powder diffraction profiles for MnFe₃O₅ at 13 K, with upper tick marks indicating the MnFe₃O₅ phase and lower for residual platinum from the sample container during high pressure-temperature synthesis. ($R_{wp} = 15.6 \%$ and $R_p = 13.2 \%$) Insert shows the *Cmcm* structure of MnFe₃O₅ at 13 K with Fe1 octahedra shown in red, Fe2 in blue and Mn triangular prisms in green. Oxygens are located at the corners of polyhedra.