Supporting Information

Non-doped white organic light-emitting diodes with superior

efficiency/color stability by employing ultra-thin phosphorescent

emitter

Bo Zhao,^{a*} Heng Zhang,^a Ziqi Wang,^a Yanqin Miao,^a Zhongqiang Wang,^a Jie Li,^{a*} Hua Wang,^a

Yuying Hao,^b Wenlian Li^c

^aKey Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of

Education, and Research Center of Advanced Materials Science and Technology, Taiyuan

University of Technology, Taiyuan 030024, China

^bKey Laboratory of Advanced Transducers and Intelligent Control System of Ministry of

Education, and College of Physics and Optoelectronics, Taiyuan University of Technology,

Taiyuan 030024, China

^cState Key Laboratory of Luminescence and Applications, Changehun Institute of Optics, Fine

Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Corresponding Authors

*E-mail: zhaobo01@tyut.edu.cn and lijie01@tyut.edu.cn

- 1 -

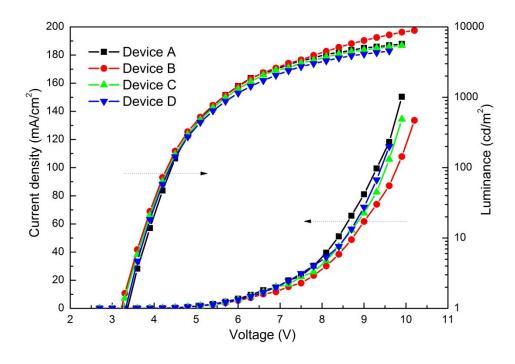


Fig. S1 The current density-voltage-luminance curves of Device A to Device D.

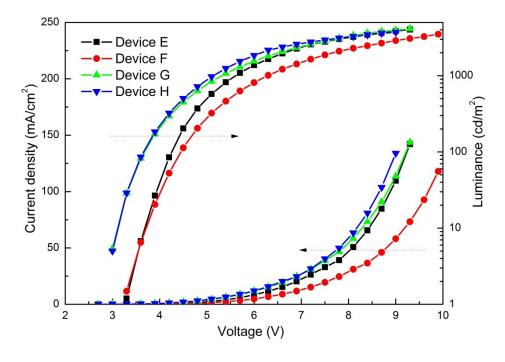


Fig. S2 The current density-voltage-luminance curves of Device E to Device H.